A New Mechanism Involving ERK Contributes to Rosiglitazone Inhibition of Tumor Necrosis Factor-α and Interferon-γ Inflammatory Effects in Human Endothelial Cells

OBJECTIVE—Microvascular endothelium is one of the main targets of the inflammatory response. On specific activation, endothelial cells recruit Th1-lymphocytes at the inflammatory site. We investigated the intracellular signaling mediating tumor necrosis factor (TNF)-α and interferon (IFN)-γ inflamma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2008-04, Vol.28 (4), p.718-724
Hauptverfasser: Lombardi, Adriana, Cantini, Giulia, Piscitelli, Elisabetta, Gelmini, Stefania, Francalanci, Michela, Mello, Tommaso, Ceni, Elisabetta, Varano, Gabriele, Forti, Gianni, Rotondi, Mario, Galli, Andrea, Serio, Mario, Luconi, Michaela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 724
container_issue 4
container_start_page 718
container_title Arteriosclerosis, thrombosis, and vascular biology
container_volume 28
creator Lombardi, Adriana
Cantini, Giulia
Piscitelli, Elisabetta
Gelmini, Stefania
Francalanci, Michela
Mello, Tommaso
Ceni, Elisabetta
Varano, Gabriele
Forti, Gianni
Rotondi, Mario
Galli, Andrea
Serio, Mario
Luconi, Michaela
description OBJECTIVE—Microvascular endothelium is one of the main targets of the inflammatory response. On specific activation, endothelial cells recruit Th1-lymphocytes at the inflammatory site. We investigated the intracellular signaling mediating tumor necrosis factor (TNF)-α and interferon (IFN)-γ inflammatory response in human microvascular endothelial cells (HMEC-1) and the interfering effects of the peroxisome-proliferator-activated-receptor (PPARγ) agonist, rosiglitazone (RGZ). METHODS AND RESULTS—TNFα and IFNγ, mainly when combined, stimulate IFNγ-inducible protein of 10 kDa (IP10) and fractalkine production evaluated by ELISA and TaqMan analyses. This effect is not only mediated by activation of the NFkB and Stat1 classic pathways, but also involves a rapid increase in phosphorylation and activation of extracellular signal-regulated kinases (ERK1/2) as measured by Western blot. RGZ interferes with TNFα and IFNγ stimulation of IP10, fractalkine, and adhesion molecule through a novel rapid mechanism which involves the blocking of ERK activation. CONCLUSIONS—Our findings shed new light on the mechanisms underlying the inflammatory response of microvascular endothelium and on the possible therapeutic use of RGZ in vasculopathies involving Th1-responses.
doi_str_mv 10.1161/ATVBAHA.107.160713
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68091985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68091985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4201-ff43fb3fcdf825cb51d14660580c3988e9edcac227401585f02a41825b9a0ee93</originalsourceid><addsrcrecordid>eNpFkU1uFDEQhVsIRELgAiyQN7DrofzTf8tmNGEiAkjRwLbldttpg9sOtjuj5Do5AeIeORMeTQsWJdeTvnpy1cuy1xhWGJf4fbv7_qHdtisM1QqXUGH6JDvFBWE5K2n5NPVQNXlRMnKSvQjhBwAwQuB5doJrQhvMmtPsoUVf5B59lmLkVocJXdhbZ261vUabq09o7Wz0up-jDCg6dOWCvjY68ntnZUJH3euonUVOod08OZ_MhE9QQOdcROfzx9-I2yGhUXolvbP545-klOHTxBNwhzZKSRED0hZt54lbtLGDi6M0mhu0lsaEl9kzxU2Qr5b3LPt2vtmtt_nl148X6_YyF4wAzpViVPVUiUHVpBB9gQfMyhKKGgRt6lo2chBcEFIxwEVdKCCcpUsUfcNByoaeZe-Ovjfe_ZpliN2kg0g_4Fa6OXRlDQ1u6iKB5Agedg1equ7G64n7uw5Dd4imW6JJuuqO0aShN4v73E9y-D-yZJGAtwvAg-BGeW6FDv84AgRXtGaJY0du70y6avhp5r303Si5iWN3CJmmpXMCUANLMk9FMP0LlnyqGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68091985</pqid></control><display><type>article</type><title>A New Mechanism Involving ERK Contributes to Rosiglitazone Inhibition of Tumor Necrosis Factor-α and Interferon-γ Inflammatory Effects in Human Endothelial Cells</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Journals@Ovid Complete</source><creator>Lombardi, Adriana ; Cantini, Giulia ; Piscitelli, Elisabetta ; Gelmini, Stefania ; Francalanci, Michela ; Mello, Tommaso ; Ceni, Elisabetta ; Varano, Gabriele ; Forti, Gianni ; Rotondi, Mario ; Galli, Andrea ; Serio, Mario ; Luconi, Michaela</creator><creatorcontrib>Lombardi, Adriana ; Cantini, Giulia ; Piscitelli, Elisabetta ; Gelmini, Stefania ; Francalanci, Michela ; Mello, Tommaso ; Ceni, Elisabetta ; Varano, Gabriele ; Forti, Gianni ; Rotondi, Mario ; Galli, Andrea ; Serio, Mario ; Luconi, Michaela</creatorcontrib><description>OBJECTIVE—Microvascular endothelium is one of the main targets of the inflammatory response. On specific activation, endothelial cells recruit Th1-lymphocytes at the inflammatory site. We investigated the intracellular signaling mediating tumor necrosis factor (TNF)-α and interferon (IFN)-γ inflammatory response in human microvascular endothelial cells (HMEC-1) and the interfering effects of the peroxisome-proliferator-activated-receptor (PPARγ) agonist, rosiglitazone (RGZ). METHODS AND RESULTS—TNFα and IFNγ, mainly when combined, stimulate IFNγ-inducible protein of 10 kDa (IP10) and fractalkine production evaluated by ELISA and TaqMan analyses. This effect is not only mediated by activation of the NFkB and Stat1 classic pathways, but also involves a rapid increase in phosphorylation and activation of extracellular signal-regulated kinases (ERK1/2) as measured by Western blot. RGZ interferes with TNFα and IFNγ stimulation of IP10, fractalkine, and adhesion molecule through a novel rapid mechanism which involves the blocking of ERK activation. CONCLUSIONS—Our findings shed new light on the mechanisms underlying the inflammatory response of microvascular endothelium and on the possible therapeutic use of RGZ in vasculopathies involving Th1-responses.</description><identifier>ISSN: 1079-5642</identifier><identifier>EISSN: 1524-4636</identifier><identifier>DOI: 10.1161/ATVBAHA.107.160713</identifier><identifier>PMID: 18239149</identifier><identifier>CODEN: ATVBFA</identifier><language>eng</language><publisher>Philadelphia, PA: American Heart Association, Inc</publisher><subject>Anti-Inflammatory Agents - metabolism ; Anti-Inflammatory Agents - pharmacology ; Atherosclerosis (general aspects, experimental research) ; Biological and medical sciences ; Blood and lymphatic vessels ; Blood vessels and receptors ; Cardiology. Vascular system ; Cell Line ; Chemokine CXCL10 - metabolism ; Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous ; Endothelial Cells - drug effects ; Endothelial Cells - immunology ; Endothelial Cells - metabolism ; Endothelial Cells - pathology ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Fundamental and applied biological sciences. Psychology ; Humans ; Hypoglycemic Agents - metabolism ; Hypoglycemic Agents - pharmacology ; Inflammation - metabolism ; Inflammation - pathology ; Inflammation - prevention &amp; control ; Interferon-gamma - antagonists &amp; inhibitors ; Interferon-gamma - biosynthesis ; MAP Kinase Signaling System - drug effects ; Medical sciences ; PPAR gamma - metabolism ; Signal Transduction - drug effects ; Th1 Cells - drug effects ; Th1 Cells - immunology ; Thiazolidinediones - metabolism ; Thiazolidinediones - pharmacology ; Tumor Necrosis Factor-alpha - antagonists &amp; inhibitors ; Tumor Necrosis Factor-alpha - biosynthesis ; Vertebrates: cardiovascular system</subject><ispartof>Arteriosclerosis, thrombosis, and vascular biology, 2008-04, Vol.28 (4), p.718-724</ispartof><rights>2008 American Heart Association, Inc.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4201-ff43fb3fcdf825cb51d14660580c3988e9edcac227401585f02a41825b9a0ee93</citedby><cites>FETCH-LOGICAL-c4201-ff43fb3fcdf825cb51d14660580c3988e9edcac227401585f02a41825b9a0ee93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20217384$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18239149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lombardi, Adriana</creatorcontrib><creatorcontrib>Cantini, Giulia</creatorcontrib><creatorcontrib>Piscitelli, Elisabetta</creatorcontrib><creatorcontrib>Gelmini, Stefania</creatorcontrib><creatorcontrib>Francalanci, Michela</creatorcontrib><creatorcontrib>Mello, Tommaso</creatorcontrib><creatorcontrib>Ceni, Elisabetta</creatorcontrib><creatorcontrib>Varano, Gabriele</creatorcontrib><creatorcontrib>Forti, Gianni</creatorcontrib><creatorcontrib>Rotondi, Mario</creatorcontrib><creatorcontrib>Galli, Andrea</creatorcontrib><creatorcontrib>Serio, Mario</creatorcontrib><creatorcontrib>Luconi, Michaela</creatorcontrib><title>A New Mechanism Involving ERK Contributes to Rosiglitazone Inhibition of Tumor Necrosis Factor-α and Interferon-γ Inflammatory Effects in Human Endothelial Cells</title><title>Arteriosclerosis, thrombosis, and vascular biology</title><addtitle>Arterioscler Thromb Vasc Biol</addtitle><description>OBJECTIVE—Microvascular endothelium is one of the main targets of the inflammatory response. On specific activation, endothelial cells recruit Th1-lymphocytes at the inflammatory site. We investigated the intracellular signaling mediating tumor necrosis factor (TNF)-α and interferon (IFN)-γ inflammatory response in human microvascular endothelial cells (HMEC-1) and the interfering effects of the peroxisome-proliferator-activated-receptor (PPARγ) agonist, rosiglitazone (RGZ). METHODS AND RESULTS—TNFα and IFNγ, mainly when combined, stimulate IFNγ-inducible protein of 10 kDa (IP10) and fractalkine production evaluated by ELISA and TaqMan analyses. This effect is not only mediated by activation of the NFkB and Stat1 classic pathways, but also involves a rapid increase in phosphorylation and activation of extracellular signal-regulated kinases (ERK1/2) as measured by Western blot. RGZ interferes with TNFα and IFNγ stimulation of IP10, fractalkine, and adhesion molecule through a novel rapid mechanism which involves the blocking of ERK activation. CONCLUSIONS—Our findings shed new light on the mechanisms underlying the inflammatory response of microvascular endothelium and on the possible therapeutic use of RGZ in vasculopathies involving Th1-responses.</description><subject>Anti-Inflammatory Agents - metabolism</subject><subject>Anti-Inflammatory Agents - pharmacology</subject><subject>Atherosclerosis (general aspects, experimental research)</subject><subject>Biological and medical sciences</subject><subject>Blood and lymphatic vessels</subject><subject>Blood vessels and receptors</subject><subject>Cardiology. Vascular system</subject><subject>Cell Line</subject><subject>Chemokine CXCL10 - metabolism</subject><subject>Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - immunology</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelial Cells - pathology</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Hypoglycemic Agents - metabolism</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>Inflammation - metabolism</subject><subject>Inflammation - pathology</subject><subject>Inflammation - prevention &amp; control</subject><subject>Interferon-gamma - antagonists &amp; inhibitors</subject><subject>Interferon-gamma - biosynthesis</subject><subject>MAP Kinase Signaling System - drug effects</subject><subject>Medical sciences</subject><subject>PPAR gamma - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Th1 Cells - drug effects</subject><subject>Th1 Cells - immunology</subject><subject>Thiazolidinediones - metabolism</subject><subject>Thiazolidinediones - pharmacology</subject><subject>Tumor Necrosis Factor-alpha - antagonists &amp; inhibitors</subject><subject>Tumor Necrosis Factor-alpha - biosynthesis</subject><subject>Vertebrates: cardiovascular system</subject><issn>1079-5642</issn><issn>1524-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkU1uFDEQhVsIRELgAiyQN7DrofzTf8tmNGEiAkjRwLbldttpg9sOtjuj5Do5AeIeORMeTQsWJdeTvnpy1cuy1xhWGJf4fbv7_qHdtisM1QqXUGH6JDvFBWE5K2n5NPVQNXlRMnKSvQjhBwAwQuB5doJrQhvMmtPsoUVf5B59lmLkVocJXdhbZ261vUabq09o7Wz0up-jDCg6dOWCvjY68ntnZUJH3euonUVOod08OZ_MhE9QQOdcROfzx9-I2yGhUXolvbP545-klOHTxBNwhzZKSRED0hZt54lbtLGDi6M0mhu0lsaEl9kzxU2Qr5b3LPt2vtmtt_nl148X6_YyF4wAzpViVPVUiUHVpBB9gQfMyhKKGgRt6lo2chBcEFIxwEVdKCCcpUsUfcNByoaeZe-Ovjfe_ZpliN2kg0g_4Fa6OXRlDQ1u6iKB5Agedg1equ7G64n7uw5Dd4imW6JJuuqO0aShN4v73E9y-D-yZJGAtwvAg-BGeW6FDv84AgRXtGaJY0du70y6avhp5r303Si5iWN3CJmmpXMCUANLMk9FMP0LlnyqGg</recordid><startdate>200804</startdate><enddate>200804</enddate><creator>Lombardi, Adriana</creator><creator>Cantini, Giulia</creator><creator>Piscitelli, Elisabetta</creator><creator>Gelmini, Stefania</creator><creator>Francalanci, Michela</creator><creator>Mello, Tommaso</creator><creator>Ceni, Elisabetta</creator><creator>Varano, Gabriele</creator><creator>Forti, Gianni</creator><creator>Rotondi, Mario</creator><creator>Galli, Andrea</creator><creator>Serio, Mario</creator><creator>Luconi, Michaela</creator><general>American Heart Association, Inc</general><general>Lippincott</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200804</creationdate><title>A New Mechanism Involving ERK Contributes to Rosiglitazone Inhibition of Tumor Necrosis Factor-α and Interferon-γ Inflammatory Effects in Human Endothelial Cells</title><author>Lombardi, Adriana ; Cantini, Giulia ; Piscitelli, Elisabetta ; Gelmini, Stefania ; Francalanci, Michela ; Mello, Tommaso ; Ceni, Elisabetta ; Varano, Gabriele ; Forti, Gianni ; Rotondi, Mario ; Galli, Andrea ; Serio, Mario ; Luconi, Michaela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4201-ff43fb3fcdf825cb51d14660580c3988e9edcac227401585f02a41825b9a0ee93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Anti-Inflammatory Agents - metabolism</topic><topic>Anti-Inflammatory Agents - pharmacology</topic><topic>Atherosclerosis (general aspects, experimental research)</topic><topic>Biological and medical sciences</topic><topic>Blood and lymphatic vessels</topic><topic>Blood vessels and receptors</topic><topic>Cardiology. Vascular system</topic><topic>Cell Line</topic><topic>Chemokine CXCL10 - metabolism</topic><topic>Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - immunology</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelial Cells - pathology</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Hypoglycemic Agents - metabolism</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>Inflammation - metabolism</topic><topic>Inflammation - pathology</topic><topic>Inflammation - prevention &amp; control</topic><topic>Interferon-gamma - antagonists &amp; inhibitors</topic><topic>Interferon-gamma - biosynthesis</topic><topic>MAP Kinase Signaling System - drug effects</topic><topic>Medical sciences</topic><topic>PPAR gamma - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Th1 Cells - drug effects</topic><topic>Th1 Cells - immunology</topic><topic>Thiazolidinediones - metabolism</topic><topic>Thiazolidinediones - pharmacology</topic><topic>Tumor Necrosis Factor-alpha - antagonists &amp; inhibitors</topic><topic>Tumor Necrosis Factor-alpha - biosynthesis</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lombardi, Adriana</creatorcontrib><creatorcontrib>Cantini, Giulia</creatorcontrib><creatorcontrib>Piscitelli, Elisabetta</creatorcontrib><creatorcontrib>Gelmini, Stefania</creatorcontrib><creatorcontrib>Francalanci, Michela</creatorcontrib><creatorcontrib>Mello, Tommaso</creatorcontrib><creatorcontrib>Ceni, Elisabetta</creatorcontrib><creatorcontrib>Varano, Gabriele</creatorcontrib><creatorcontrib>Forti, Gianni</creatorcontrib><creatorcontrib>Rotondi, Mario</creatorcontrib><creatorcontrib>Galli, Andrea</creatorcontrib><creatorcontrib>Serio, Mario</creatorcontrib><creatorcontrib>Luconi, Michaela</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lombardi, Adriana</au><au>Cantini, Giulia</au><au>Piscitelli, Elisabetta</au><au>Gelmini, Stefania</au><au>Francalanci, Michela</au><au>Mello, Tommaso</au><au>Ceni, Elisabetta</au><au>Varano, Gabriele</au><au>Forti, Gianni</au><au>Rotondi, Mario</au><au>Galli, Andrea</au><au>Serio, Mario</au><au>Luconi, Michaela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Mechanism Involving ERK Contributes to Rosiglitazone Inhibition of Tumor Necrosis Factor-α and Interferon-γ Inflammatory Effects in Human Endothelial Cells</atitle><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle><addtitle>Arterioscler Thromb Vasc Biol</addtitle><date>2008-04</date><risdate>2008</risdate><volume>28</volume><issue>4</issue><spage>718</spage><epage>724</epage><pages>718-724</pages><issn>1079-5642</issn><eissn>1524-4636</eissn><coden>ATVBFA</coden><abstract>OBJECTIVE—Microvascular endothelium is one of the main targets of the inflammatory response. On specific activation, endothelial cells recruit Th1-lymphocytes at the inflammatory site. We investigated the intracellular signaling mediating tumor necrosis factor (TNF)-α and interferon (IFN)-γ inflammatory response in human microvascular endothelial cells (HMEC-1) and the interfering effects of the peroxisome-proliferator-activated-receptor (PPARγ) agonist, rosiglitazone (RGZ). METHODS AND RESULTS—TNFα and IFNγ, mainly when combined, stimulate IFNγ-inducible protein of 10 kDa (IP10) and fractalkine production evaluated by ELISA and TaqMan analyses. This effect is not only mediated by activation of the NFkB and Stat1 classic pathways, but also involves a rapid increase in phosphorylation and activation of extracellular signal-regulated kinases (ERK1/2) as measured by Western blot. RGZ interferes with TNFα and IFNγ stimulation of IP10, fractalkine, and adhesion molecule through a novel rapid mechanism which involves the blocking of ERK activation. CONCLUSIONS—Our findings shed new light on the mechanisms underlying the inflammatory response of microvascular endothelium and on the possible therapeutic use of RGZ in vasculopathies involving Th1-responses.</abstract><cop>Philadelphia, PA</cop><cop>Hagerstown, MD</cop><pub>American Heart Association, Inc</pub><pmid>18239149</pmid><doi>10.1161/ATVBAHA.107.160713</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1079-5642
ispartof Arteriosclerosis, thrombosis, and vascular biology, 2008-04, Vol.28 (4), p.718-724
issn 1079-5642
1524-4636
language eng
recordid cdi_proquest_miscellaneous_68091985
source MEDLINE; Alma/SFX Local Collection; Journals@Ovid Complete
subjects Anti-Inflammatory Agents - metabolism
Anti-Inflammatory Agents - pharmacology
Atherosclerosis (general aspects, experimental research)
Biological and medical sciences
Blood and lymphatic vessels
Blood vessels and receptors
Cardiology. Vascular system
Cell Line
Chemokine CXCL10 - metabolism
Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous
Endothelial Cells - drug effects
Endothelial Cells - immunology
Endothelial Cells - metabolism
Endothelial Cells - pathology
Extracellular Signal-Regulated MAP Kinases - metabolism
Fundamental and applied biological sciences. Psychology
Humans
Hypoglycemic Agents - metabolism
Hypoglycemic Agents - pharmacology
Inflammation - metabolism
Inflammation - pathology
Inflammation - prevention & control
Interferon-gamma - antagonists & inhibitors
Interferon-gamma - biosynthesis
MAP Kinase Signaling System - drug effects
Medical sciences
PPAR gamma - metabolism
Signal Transduction - drug effects
Th1 Cells - drug effects
Th1 Cells - immunology
Thiazolidinediones - metabolism
Thiazolidinediones - pharmacology
Tumor Necrosis Factor-alpha - antagonists & inhibitors
Tumor Necrosis Factor-alpha - biosynthesis
Vertebrates: cardiovascular system
title A New Mechanism Involving ERK Contributes to Rosiglitazone Inhibition of Tumor Necrosis Factor-α and Interferon-γ Inflammatory Effects in Human Endothelial Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T21%3A07%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Mechanism%20Involving%20ERK%20Contributes%20to%20Rosiglitazone%20Inhibition%20of%20Tumor%20Necrosis%20Factor-%CE%B1%20and%20Interferon-%CE%B3%20Inflammatory%20Effects%20in%20Human%20Endothelial%20Cells&rft.jtitle=Arteriosclerosis,%20thrombosis,%20and%20vascular%20biology&rft.au=Lombardi,%20Adriana&rft.date=2008-04&rft.volume=28&rft.issue=4&rft.spage=718&rft.epage=724&rft.pages=718-724&rft.issn=1079-5642&rft.eissn=1524-4636&rft.coden=ATVBFA&rft_id=info:doi/10.1161/ATVBAHA.107.160713&rft_dat=%3Cproquest_cross%3E68091985%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68091985&rft_id=info:pmid/18239149&rfr_iscdi=true