Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification

Erythroid cell production results from passage through cellular hierarchies dependent on differential gene expression under the control of transcription factors responsive to changing niches. We have constructed Genetic Regulatory Networks (GRNs) describing this process, based predominantly on mouse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental biology 2006-06, Vol.294 (2), p.525-540
Hauptverfasser: Swiers, Gemma, Patient, Roger, Loose, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 540
container_issue 2
container_start_page 525
container_title Developmental biology
container_volume 294
creator Swiers, Gemma
Patient, Roger
Loose, Matthew
description Erythroid cell production results from passage through cellular hierarchies dependent on differential gene expression under the control of transcription factors responsive to changing niches. We have constructed Genetic Regulatory Networks (GRNs) describing this process, based predominantly on mouse data. Regulatory network motifs identified in E. coli and yeast GRNs are found in combination in these GRNs. Feed-forward motifs with autoregulation generate forward momentum and also control its rate, which is at its lowest in hematopoietic stem cells (HSCs). The simultaneous requirement for multiple regulators in multi-input motifs (MIMs) provides tight control over expression of target genes. Combinations of MIMs, exemplified by the SCL/LMO2 complexes, which have variable content and binding sites, explain how individual regulators can have different targets in HSCs and erythroid cells and possibly also how HSCs maintain stem cell functions while expressing lineage-affiliated genes at low level, so-called multi-lineage priming. MIMs combined with cross-antagonism describe the relationship between PU.1 and GATA-1 and between two of their target genes, Fli-1 and EKLF, with victory for GATA-1 and EKLF leading to erythroid lineage specification. These GRNs are useful repositories for current regulatory information, are accessible in interactive form via the internet, enable the consequences of perturbation to be predicted, and can act as seed networks to organize the rapidly accumulating microarray data.
doi_str_mv 10.1016/j.ydbio.2006.02.051
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68086041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012160606001679</els_id><sourcerecordid>19963950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-52f020e46612d47c35c0b25e6be0afa33bdaacc8a2ce414c1b101c91822a24513</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMoun78AkFy8tY6SZPYHjyI-AWCFwVvIU2ma9a2WZOusv_e7gd409PAzDMzL-9LyCmDnAFTF7N86Wofcg6gcuA5SLZDJgwqmUkl3nbJBIDxjClQB-QwpRkAFGVZ7JMDphRXquQT4u6xx8FbGnG6aM0Q4pKOje8QPxKdxzCNput8P6Xv2I3TefBrOg3YUYttm6jpHcW4HN5j8I62vkczRZrmaH3jrRl86I_JXmPahCfbekRe725fbh6yp-f7x5vrp8wKKYZM8gY4oFCKcScubSEt1FyiqhFMY4qidsZYWxpuUTBhWT36YCtWcm64kKw4Iuebu6PwzwWmQXc-rVSaHsMiaVVCqUD8D7KqUkUlYQSLDWhjSClio-fRdyYuNQO9SkHP9DoFvUpBA9ew1nG2Pb-oO3S_O1vbR-BqA-DoxpfHqJP12Ft0PqIdtAv-zwc_YmGb7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19963950</pqid></control><display><type>article</type><title>Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Freely accessible e-journals</source><creator>Swiers, Gemma ; Patient, Roger ; Loose, Matthew</creator><creatorcontrib>Swiers, Gemma ; Patient, Roger ; Loose, Matthew</creatorcontrib><description>Erythroid cell production results from passage through cellular hierarchies dependent on differential gene expression under the control of transcription factors responsive to changing niches. We have constructed Genetic Regulatory Networks (GRNs) describing this process, based predominantly on mouse data. Regulatory network motifs identified in E. coli and yeast GRNs are found in combination in these GRNs. Feed-forward motifs with autoregulation generate forward momentum and also control its rate, which is at its lowest in hematopoietic stem cells (HSCs). The simultaneous requirement for multiple regulators in multi-input motifs (MIMs) provides tight control over expression of target genes. Combinations of MIMs, exemplified by the SCL/LMO2 complexes, which have variable content and binding sites, explain how individual regulators can have different targets in HSCs and erythroid cells and possibly also how HSCs maintain stem cell functions while expressing lineage-affiliated genes at low level, so-called multi-lineage priming. MIMs combined with cross-antagonism describe the relationship between PU.1 and GATA-1 and between two of their target genes, Fli-1 and EKLF, with victory for GATA-1 and EKLF leading to erythroid lineage specification. These GRNs are useful repositories for current regulatory information, are accessible in interactive form via the internet, enable the consequences of perturbation to be predicted, and can act as seed networks to organize the rapidly accumulating microarray data.</description><identifier>ISSN: 0012-1606</identifier><identifier>EISSN: 1095-564X</identifier><identifier>DOI: 10.1016/j.ydbio.2006.02.051</identifier><identifier>PMID: 16626682</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Blood ; Cell Lineage ; Erythroid lineage ; Escherichia coli ; Gene Expression Regulation, Developmental ; Hematopoiesis ; Hematopoietic Stem Cells - cytology ; Hematopoietic Stem Cells - physiology ; Mice ; Models, Genetic ; Network motif ; Signal Transduction - physiology ; Stem cell ; Transcription Factors - metabolism ; Transcriptional regulatory network</subject><ispartof>Developmental biology, 2006-06, Vol.294 (2), p.525-540</ispartof><rights>2006 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-52f020e46612d47c35c0b25e6be0afa33bdaacc8a2ce414c1b101c91822a24513</citedby><cites>FETCH-LOGICAL-c454t-52f020e46612d47c35c0b25e6be0afa33bdaacc8a2ce414c1b101c91822a24513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0012160606001679$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16626682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Swiers, Gemma</creatorcontrib><creatorcontrib>Patient, Roger</creatorcontrib><creatorcontrib>Loose, Matthew</creatorcontrib><title>Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification</title><title>Developmental biology</title><addtitle>Dev Biol</addtitle><description>Erythroid cell production results from passage through cellular hierarchies dependent on differential gene expression under the control of transcription factors responsive to changing niches. We have constructed Genetic Regulatory Networks (GRNs) describing this process, based predominantly on mouse data. Regulatory network motifs identified in E. coli and yeast GRNs are found in combination in these GRNs. Feed-forward motifs with autoregulation generate forward momentum and also control its rate, which is at its lowest in hematopoietic stem cells (HSCs). The simultaneous requirement for multiple regulators in multi-input motifs (MIMs) provides tight control over expression of target genes. Combinations of MIMs, exemplified by the SCL/LMO2 complexes, which have variable content and binding sites, explain how individual regulators can have different targets in HSCs and erythroid cells and possibly also how HSCs maintain stem cell functions while expressing lineage-affiliated genes at low level, so-called multi-lineage priming. MIMs combined with cross-antagonism describe the relationship between PU.1 and GATA-1 and between two of their target genes, Fli-1 and EKLF, with victory for GATA-1 and EKLF leading to erythroid lineage specification. These GRNs are useful repositories for current regulatory information, are accessible in interactive form via the internet, enable the consequences of perturbation to be predicted, and can act as seed networks to organize the rapidly accumulating microarray data.</description><subject>Animals</subject><subject>Blood</subject><subject>Cell Lineage</subject><subject>Erythroid lineage</subject><subject>Escherichia coli</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Hematopoiesis</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Hematopoietic Stem Cells - physiology</subject><subject>Mice</subject><subject>Models, Genetic</subject><subject>Network motif</subject><subject>Signal Transduction - physiology</subject><subject>Stem cell</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptional regulatory network</subject><issn>0012-1606</issn><issn>1095-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1LxDAQhoMoun78AkFy8tY6SZPYHjyI-AWCFwVvIU2ma9a2WZOusv_e7gd409PAzDMzL-9LyCmDnAFTF7N86Wofcg6gcuA5SLZDJgwqmUkl3nbJBIDxjClQB-QwpRkAFGVZ7JMDphRXquQT4u6xx8FbGnG6aM0Q4pKOje8QPxKdxzCNput8P6Xv2I3TefBrOg3YUYttm6jpHcW4HN5j8I62vkczRZrmaH3jrRl86I_JXmPahCfbekRe725fbh6yp-f7x5vrp8wKKYZM8gY4oFCKcScubSEt1FyiqhFMY4qidsZYWxpuUTBhWT36YCtWcm64kKw4Iuebu6PwzwWmQXc-rVSaHsMiaVVCqUD8D7KqUkUlYQSLDWhjSClio-fRdyYuNQO9SkHP9DoFvUpBA9ew1nG2Pb-oO3S_O1vbR-BqA-DoxpfHqJP12Ft0PqIdtAv-zwc_YmGb7g</recordid><startdate>20060615</startdate><enddate>20060615</enddate><creator>Swiers, Gemma</creator><creator>Patient, Roger</creator><creator>Loose, Matthew</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060615</creationdate><title>Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification</title><author>Swiers, Gemma ; Patient, Roger ; Loose, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-52f020e46612d47c35c0b25e6be0afa33bdaacc8a2ce414c1b101c91822a24513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Blood</topic><topic>Cell Lineage</topic><topic>Erythroid lineage</topic><topic>Escherichia coli</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Hematopoiesis</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Hematopoietic Stem Cells - physiology</topic><topic>Mice</topic><topic>Models, Genetic</topic><topic>Network motif</topic><topic>Signal Transduction - physiology</topic><topic>Stem cell</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptional regulatory network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swiers, Gemma</creatorcontrib><creatorcontrib>Patient, Roger</creatorcontrib><creatorcontrib>Loose, Matthew</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swiers, Gemma</au><au>Patient, Roger</au><au>Loose, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification</atitle><jtitle>Developmental biology</jtitle><addtitle>Dev Biol</addtitle><date>2006-06-15</date><risdate>2006</risdate><volume>294</volume><issue>2</issue><spage>525</spage><epage>540</epage><pages>525-540</pages><issn>0012-1606</issn><eissn>1095-564X</eissn><abstract>Erythroid cell production results from passage through cellular hierarchies dependent on differential gene expression under the control of transcription factors responsive to changing niches. We have constructed Genetic Regulatory Networks (GRNs) describing this process, based predominantly on mouse data. Regulatory network motifs identified in E. coli and yeast GRNs are found in combination in these GRNs. Feed-forward motifs with autoregulation generate forward momentum and also control its rate, which is at its lowest in hematopoietic stem cells (HSCs). The simultaneous requirement for multiple regulators in multi-input motifs (MIMs) provides tight control over expression of target genes. Combinations of MIMs, exemplified by the SCL/LMO2 complexes, which have variable content and binding sites, explain how individual regulators can have different targets in HSCs and erythroid cells and possibly also how HSCs maintain stem cell functions while expressing lineage-affiliated genes at low level, so-called multi-lineage priming. MIMs combined with cross-antagonism describe the relationship between PU.1 and GATA-1 and between two of their target genes, Fli-1 and EKLF, with victory for GATA-1 and EKLF leading to erythroid lineage specification. These GRNs are useful repositories for current regulatory information, are accessible in interactive form via the internet, enable the consequences of perturbation to be predicted, and can act as seed networks to organize the rapidly accumulating microarray data.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16626682</pmid><doi>10.1016/j.ydbio.2006.02.051</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1606
ispartof Developmental biology, 2006-06, Vol.294 (2), p.525-540
issn 0012-1606
1095-564X
language eng
recordid cdi_proquest_miscellaneous_68086041
source MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Freely accessible e-journals
subjects Animals
Blood
Cell Lineage
Erythroid lineage
Escherichia coli
Gene Expression Regulation, Developmental
Hematopoiesis
Hematopoietic Stem Cells - cytology
Hematopoietic Stem Cells - physiology
Mice
Models, Genetic
Network motif
Signal Transduction - physiology
Stem cell
Transcription Factors - metabolism
Transcriptional regulatory network
title Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20regulatory%20networks%20programming%20hematopoietic%20stem%20cells%20and%20erythroid%20lineage%20specification&rft.jtitle=Developmental%20biology&rft.au=Swiers,%20Gemma&rft.date=2006-06-15&rft.volume=294&rft.issue=2&rft.spage=525&rft.epage=540&rft.pages=525-540&rft.issn=0012-1606&rft.eissn=1095-564X&rft_id=info:doi/10.1016/j.ydbio.2006.02.051&rft_dat=%3Cproquest_cross%3E19963950%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19963950&rft_id=info:pmid/16626682&rft_els_id=S0012160606001679&rfr_iscdi=true