Polymer confinement and bacterial gliding motility

Cyanobacteria and myxobacteria use slime secretion for gliding motility over surfaces. The slime is produced by the nozzle-like pores located on the bacteria surface. To understand the mechanism of gliding motion and its relation to slime polymerization, we have performed molecular dynamics simulati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2005-07, Vol.17 (3), p.361-372
Hauptverfasser: JEON, J, DOBRYNIN, A. V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 372
container_issue 3
container_start_page 361
container_title The European physical journal. E, Soft matter and biological physics
container_volume 17
creator JEON, J
DOBRYNIN, A. V
description Cyanobacteria and myxobacteria use slime secretion for gliding motility over surfaces. The slime is produced by the nozzle-like pores located on the bacteria surface. To understand the mechanism of gliding motion and its relation to slime polymerization, we have performed molecular dynamics simulations of a molecular nozzle with growing inside polymer chains. These simulations show that the compression of polymer chains inside the nozzle is a driving force for propulsion. There is a linear relationship between the average nozzle velocity and the chain polymerization rate with a proportionality coefficient dependent on the geometric characteristics of the nozzle such as its length and friction coefficient. This minimal model of the molecular engine was used to explain the gliding motion of bacteria over surfaces.
doi_str_mv 10.1140/epje/i2005-10015-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68082562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68082562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-a8cdd189f8ead6531cf6c7bc7f83d47ca661c30a05e813790525a3f984b33d013</originalsourceid><addsrcrecordid>eNpF0D1PwzAQgGELgWgp_AEGlAW20LMdJ_aIKr6kSjCAxGY5_qhcOUmx06H_nrSN6HQ3PHfDi9AthkeMC5jbzdrOPQFgOQbALBdnaIqJIDkX7Of8fy_wBF2ltIYBFUAv0QQzISpK-RSRzy7sGhsz3bXOt7axbZ-p1mS10r2NXoVsFbzx7Sprut4H3--u0YVTIdmbcc7Q98vz1-ItX368vi-elrmmFPe54toYzIXjVpmSUaxdqataV45TU1RalSXWFBQwyzGtBDDCFHWCFzWlBjCdoYfj303sfrc29bLxSdsQVGu7bZIlB05YSQZIjlDHLqVondxE36i4kxjkvpTcl5KHUvJQSorh6G78vq0ba04nY5oB3I9AJa2Ci6rVPp1cBXRgnP4BQV5x3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68082562</pqid></control><display><type>article</type><title>Polymer confinement and bacterial gliding motility</title><source>MEDLINE</source><source>SpringerNature Complete Journals</source><creator>JEON, J ; DOBRYNIN, A. V</creator><creatorcontrib>JEON, J ; DOBRYNIN, A. V</creatorcontrib><description>Cyanobacteria and myxobacteria use slime secretion for gliding motility over surfaces. The slime is produced by the nozzle-like pores located on the bacteria surface. To understand the mechanism of gliding motion and its relation to slime polymerization, we have performed molecular dynamics simulations of a molecular nozzle with growing inside polymer chains. These simulations show that the compression of polymer chains inside the nozzle is a driving force for propulsion. There is a linear relationship between the average nozzle velocity and the chain polymerization rate with a proportionality coefficient dependent on the geometric characteristics of the nozzle such as its length and friction coefficient. This minimal model of the molecular engine was used to explain the gliding motion of bacteria over surfaces.</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2005-10015-9</identifier><identifier>PMID: 15997338</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Biological and medical sciences ; Cell Membrane - physiology ; Cell physiology ; Computer Simulation ; Cyanobacteria ; Fundamental and applied biological sciences. Psychology ; Microfluidics - methods ; Models, Biological ; Molecular and cellular biology ; Molecular Motor Proteins - physiology ; Motility and taxis ; Motion ; Myxococcales ; Polysaccharides, Bacterial - physiology ; Stress, Mechanical ; Surface Properties</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2005-07, Vol.17 (3), p.361-372</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-a8cdd189f8ead6531cf6c7bc7f83d47ca661c30a05e813790525a3f984b33d013</citedby><cites>FETCH-LOGICAL-c331t-a8cdd189f8ead6531cf6c7bc7f83d47ca661c30a05e813790525a3f984b33d013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17033388$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15997338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>JEON, J</creatorcontrib><creatorcontrib>DOBRYNIN, A. V</creatorcontrib><title>Polymer confinement and bacterial gliding motility</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur Phys J E Soft Matter</addtitle><description>Cyanobacteria and myxobacteria use slime secretion for gliding motility over surfaces. The slime is produced by the nozzle-like pores located on the bacteria surface. To understand the mechanism of gliding motion and its relation to slime polymerization, we have performed molecular dynamics simulations of a molecular nozzle with growing inside polymer chains. These simulations show that the compression of polymer chains inside the nozzle is a driving force for propulsion. There is a linear relationship between the average nozzle velocity and the chain polymerization rate with a proportionality coefficient dependent on the geometric characteristics of the nozzle such as its length and friction coefficient. This minimal model of the molecular engine was used to explain the gliding motion of bacteria over surfaces.</description><subject>Biological and medical sciences</subject><subject>Cell Membrane - physiology</subject><subject>Cell physiology</subject><subject>Computer Simulation</subject><subject>Cyanobacteria</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Microfluidics - methods</subject><subject>Models, Biological</subject><subject>Molecular and cellular biology</subject><subject>Molecular Motor Proteins - physiology</subject><subject>Motility and taxis</subject><subject>Motion</subject><subject>Myxococcales</subject><subject>Polysaccharides, Bacterial - physiology</subject><subject>Stress, Mechanical</subject><subject>Surface Properties</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpF0D1PwzAQgGELgWgp_AEGlAW20LMdJ_aIKr6kSjCAxGY5_qhcOUmx06H_nrSN6HQ3PHfDi9AthkeMC5jbzdrOPQFgOQbALBdnaIqJIDkX7Of8fy_wBF2ltIYBFUAv0QQzISpK-RSRzy7sGhsz3bXOt7axbZ-p1mS10r2NXoVsFbzx7Sprut4H3--u0YVTIdmbcc7Q98vz1-ItX368vi-elrmmFPe54toYzIXjVpmSUaxdqataV45TU1RalSXWFBQwyzGtBDDCFHWCFzWlBjCdoYfj303sfrc29bLxSdsQVGu7bZIlB05YSQZIjlDHLqVondxE36i4kxjkvpTcl5KHUvJQSorh6G78vq0ba04nY5oB3I9AJa2Ci6rVPp1cBXRgnP4BQV5x3w</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>JEON, J</creator><creator>DOBRYNIN, A. V</creator><general>Springer</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050701</creationdate><title>Polymer confinement and bacterial gliding motility</title><author>JEON, J ; DOBRYNIN, A. V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-a8cdd189f8ead6531cf6c7bc7f83d47ca661c30a05e813790525a3f984b33d013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological and medical sciences</topic><topic>Cell Membrane - physiology</topic><topic>Cell physiology</topic><topic>Computer Simulation</topic><topic>Cyanobacteria</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Microfluidics - methods</topic><topic>Models, Biological</topic><topic>Molecular and cellular biology</topic><topic>Molecular Motor Proteins - physiology</topic><topic>Motility and taxis</topic><topic>Motion</topic><topic>Myxococcales</topic><topic>Polysaccharides, Bacterial - physiology</topic><topic>Stress, Mechanical</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JEON, J</creatorcontrib><creatorcontrib>DOBRYNIN, A. V</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JEON, J</au><au>DOBRYNIN, A. V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer confinement and bacterial gliding motility</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2005-07-01</date><risdate>2005</risdate><volume>17</volume><issue>3</issue><spage>361</spage><epage>372</epage><pages>361-372</pages><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>Cyanobacteria and myxobacteria use slime secretion for gliding motility over surfaces. The slime is produced by the nozzle-like pores located on the bacteria surface. To understand the mechanism of gliding motion and its relation to slime polymerization, we have performed molecular dynamics simulations of a molecular nozzle with growing inside polymer chains. These simulations show that the compression of polymer chains inside the nozzle is a driving force for propulsion. There is a linear relationship between the average nozzle velocity and the chain polymerization rate with a proportionality coefficient dependent on the geometric characteristics of the nozzle such as its length and friction coefficient. This minimal model of the molecular engine was used to explain the gliding motion of bacteria over surfaces.</abstract><cop>Heidelberg</cop><pub>Springer</pub><pmid>15997338</pmid><doi>10.1140/epje/i2005-10015-9</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1292-8941
ispartof The European physical journal. E, Soft matter and biological physics, 2005-07, Vol.17 (3), p.361-372
issn 1292-8941
1292-895X
language eng
recordid cdi_proquest_miscellaneous_68082562
source MEDLINE; SpringerNature Complete Journals
subjects Biological and medical sciences
Cell Membrane - physiology
Cell physiology
Computer Simulation
Cyanobacteria
Fundamental and applied biological sciences. Psychology
Microfluidics - methods
Models, Biological
Molecular and cellular biology
Molecular Motor Proteins - physiology
Motility and taxis
Motion
Myxococcales
Polysaccharides, Bacterial - physiology
Stress, Mechanical
Surface Properties
title Polymer confinement and bacterial gliding motility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer%20confinement%20and%20bacterial%20gliding%20motility&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=JEON,%20J&rft.date=2005-07-01&rft.volume=17&rft.issue=3&rft.spage=361&rft.epage=372&rft.pages=361-372&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2005-10015-9&rft_dat=%3Cproquest_cross%3E68082562%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68082562&rft_id=info:pmid/15997338&rfr_iscdi=true