Polymer confinement and bacterial gliding motility
Cyanobacteria and myxobacteria use slime secretion for gliding motility over surfaces. The slime is produced by the nozzle-like pores located on the bacteria surface. To understand the mechanism of gliding motion and its relation to slime polymerization, we have performed molecular dynamics simulati...
Gespeichert in:
Veröffentlicht in: | The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2005-07, Vol.17 (3), p.361-372 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 372 |
---|---|
container_issue | 3 |
container_start_page | 361 |
container_title | The European physical journal. E, Soft matter and biological physics |
container_volume | 17 |
creator | JEON, J DOBRYNIN, A. V |
description | Cyanobacteria and myxobacteria use slime secretion for gliding motility over surfaces. The slime is produced by the nozzle-like pores located on the bacteria surface. To understand the mechanism of gliding motion and its relation to slime polymerization, we have performed molecular dynamics simulations of a molecular nozzle with growing inside polymer chains. These simulations show that the compression of polymer chains inside the nozzle is a driving force for propulsion. There is a linear relationship between the average nozzle velocity and the chain polymerization rate with a proportionality coefficient dependent on the geometric characteristics of the nozzle such as its length and friction coefficient. This minimal model of the molecular engine was used to explain the gliding motion of bacteria over surfaces. |
doi_str_mv | 10.1140/epje/i2005-10015-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68082562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68082562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-a8cdd189f8ead6531cf6c7bc7f83d47ca661c30a05e813790525a3f984b33d013</originalsourceid><addsrcrecordid>eNpF0D1PwzAQgGELgWgp_AEGlAW20LMdJ_aIKr6kSjCAxGY5_qhcOUmx06H_nrSN6HQ3PHfDi9AthkeMC5jbzdrOPQFgOQbALBdnaIqJIDkX7Of8fy_wBF2ltIYBFUAv0QQzISpK-RSRzy7sGhsz3bXOt7axbZ-p1mS10r2NXoVsFbzx7Sprut4H3--u0YVTIdmbcc7Q98vz1-ItX368vi-elrmmFPe54toYzIXjVpmSUaxdqataV45TU1RalSXWFBQwyzGtBDDCFHWCFzWlBjCdoYfj303sfrc29bLxSdsQVGu7bZIlB05YSQZIjlDHLqVondxE36i4kxjkvpTcl5KHUvJQSorh6G78vq0ba04nY5oB3I9AJa2Ci6rVPp1cBXRgnP4BQV5x3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68082562</pqid></control><display><type>article</type><title>Polymer confinement and bacterial gliding motility</title><source>MEDLINE</source><source>SpringerNature Complete Journals</source><creator>JEON, J ; DOBRYNIN, A. V</creator><creatorcontrib>JEON, J ; DOBRYNIN, A. V</creatorcontrib><description>Cyanobacteria and myxobacteria use slime secretion for gliding motility over surfaces. The slime is produced by the nozzle-like pores located on the bacteria surface. To understand the mechanism of gliding motion and its relation to slime polymerization, we have performed molecular dynamics simulations of a molecular nozzle with growing inside polymer chains. These simulations show that the compression of polymer chains inside the nozzle is a driving force for propulsion. There is a linear relationship between the average nozzle velocity and the chain polymerization rate with a proportionality coefficient dependent on the geometric characteristics of the nozzle such as its length and friction coefficient. This minimal model of the molecular engine was used to explain the gliding motion of bacteria over surfaces.</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2005-10015-9</identifier><identifier>PMID: 15997338</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Biological and medical sciences ; Cell Membrane - physiology ; Cell physiology ; Computer Simulation ; Cyanobacteria ; Fundamental and applied biological sciences. Psychology ; Microfluidics - methods ; Models, Biological ; Molecular and cellular biology ; Molecular Motor Proteins - physiology ; Motility and taxis ; Motion ; Myxococcales ; Polysaccharides, Bacterial - physiology ; Stress, Mechanical ; Surface Properties</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2005-07, Vol.17 (3), p.361-372</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-a8cdd189f8ead6531cf6c7bc7f83d47ca661c30a05e813790525a3f984b33d013</citedby><cites>FETCH-LOGICAL-c331t-a8cdd189f8ead6531cf6c7bc7f83d47ca661c30a05e813790525a3f984b33d013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17033388$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15997338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>JEON, J</creatorcontrib><creatorcontrib>DOBRYNIN, A. V</creatorcontrib><title>Polymer confinement and bacterial gliding motility</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur Phys J E Soft Matter</addtitle><description>Cyanobacteria and myxobacteria use slime secretion for gliding motility over surfaces. The slime is produced by the nozzle-like pores located on the bacteria surface. To understand the mechanism of gliding motion and its relation to slime polymerization, we have performed molecular dynamics simulations of a molecular nozzle with growing inside polymer chains. These simulations show that the compression of polymer chains inside the nozzle is a driving force for propulsion. There is a linear relationship between the average nozzle velocity and the chain polymerization rate with a proportionality coefficient dependent on the geometric characteristics of the nozzle such as its length and friction coefficient. This minimal model of the molecular engine was used to explain the gliding motion of bacteria over surfaces.</description><subject>Biological and medical sciences</subject><subject>Cell Membrane - physiology</subject><subject>Cell physiology</subject><subject>Computer Simulation</subject><subject>Cyanobacteria</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Microfluidics - methods</subject><subject>Models, Biological</subject><subject>Molecular and cellular biology</subject><subject>Molecular Motor Proteins - physiology</subject><subject>Motility and taxis</subject><subject>Motion</subject><subject>Myxococcales</subject><subject>Polysaccharides, Bacterial - physiology</subject><subject>Stress, Mechanical</subject><subject>Surface Properties</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpF0D1PwzAQgGELgWgp_AEGlAW20LMdJ_aIKr6kSjCAxGY5_qhcOUmx06H_nrSN6HQ3PHfDi9AthkeMC5jbzdrOPQFgOQbALBdnaIqJIDkX7Of8fy_wBF2ltIYBFUAv0QQzISpK-RSRzy7sGhsz3bXOt7axbZ-p1mS10r2NXoVsFbzx7Sprut4H3--u0YVTIdmbcc7Q98vz1-ItX368vi-elrmmFPe54toYzIXjVpmSUaxdqataV45TU1RalSXWFBQwyzGtBDDCFHWCFzWlBjCdoYfj303sfrc29bLxSdsQVGu7bZIlB05YSQZIjlDHLqVondxE36i4kxjkvpTcl5KHUvJQSorh6G78vq0ba04nY5oB3I9AJa2Ci6rVPp1cBXRgnP4BQV5x3w</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>JEON, J</creator><creator>DOBRYNIN, A. V</creator><general>Springer</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050701</creationdate><title>Polymer confinement and bacterial gliding motility</title><author>JEON, J ; DOBRYNIN, A. V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-a8cdd189f8ead6531cf6c7bc7f83d47ca661c30a05e813790525a3f984b33d013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological and medical sciences</topic><topic>Cell Membrane - physiology</topic><topic>Cell physiology</topic><topic>Computer Simulation</topic><topic>Cyanobacteria</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Microfluidics - methods</topic><topic>Models, Biological</topic><topic>Molecular and cellular biology</topic><topic>Molecular Motor Proteins - physiology</topic><topic>Motility and taxis</topic><topic>Motion</topic><topic>Myxococcales</topic><topic>Polysaccharides, Bacterial - physiology</topic><topic>Stress, Mechanical</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JEON, J</creatorcontrib><creatorcontrib>DOBRYNIN, A. V</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JEON, J</au><au>DOBRYNIN, A. V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer confinement and bacterial gliding motility</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2005-07-01</date><risdate>2005</risdate><volume>17</volume><issue>3</issue><spage>361</spage><epage>372</epage><pages>361-372</pages><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>Cyanobacteria and myxobacteria use slime secretion for gliding motility over surfaces. The slime is produced by the nozzle-like pores located on the bacteria surface. To understand the mechanism of gliding motion and its relation to slime polymerization, we have performed molecular dynamics simulations of a molecular nozzle with growing inside polymer chains. These simulations show that the compression of polymer chains inside the nozzle is a driving force for propulsion. There is a linear relationship between the average nozzle velocity and the chain polymerization rate with a proportionality coefficient dependent on the geometric characteristics of the nozzle such as its length and friction coefficient. This minimal model of the molecular engine was used to explain the gliding motion of bacteria over surfaces.</abstract><cop>Heidelberg</cop><pub>Springer</pub><pmid>15997338</pmid><doi>10.1140/epje/i2005-10015-9</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1292-8941 |
ispartof | The European physical journal. E, Soft matter and biological physics, 2005-07, Vol.17 (3), p.361-372 |
issn | 1292-8941 1292-895X |
language | eng |
recordid | cdi_proquest_miscellaneous_68082562 |
source | MEDLINE; SpringerNature Complete Journals |
subjects | Biological and medical sciences Cell Membrane - physiology Cell physiology Computer Simulation Cyanobacteria Fundamental and applied biological sciences. Psychology Microfluidics - methods Models, Biological Molecular and cellular biology Molecular Motor Proteins - physiology Motility and taxis Motion Myxococcales Polysaccharides, Bacterial - physiology Stress, Mechanical Surface Properties |
title | Polymer confinement and bacterial gliding motility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer%20confinement%20and%20bacterial%20gliding%20motility&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=JEON,%20J&rft.date=2005-07-01&rft.volume=17&rft.issue=3&rft.spage=361&rft.epage=372&rft.pages=361-372&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2005-10015-9&rft_dat=%3Cproquest_cross%3E68082562%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68082562&rft_id=info:pmid/15997338&rfr_iscdi=true |