Evaluation of synchrotron X-ray computerized microtomography for the visualization of transport processes in low-porosity materials

Synchrotron-source X-ray computerized microtomography (CMT) is evaluated as a method to visualize transport processes. We conclude that CMT is adequate for visualization of transport experiments if the right conditions exist. Namely, 1) not much more than one-order-of-magnitude range in concentratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of contaminant hydrology 2005-07, Vol.78 (3), p.167-183
Hauptverfasser: Altman, Susan J., Peplinski, William J., Rivers, Mark L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 3
container_start_page 167
container_title Journal of contaminant hydrology
container_volume 78
creator Altman, Susan J.
Peplinski, William J.
Rivers, Mark L.
description Synchrotron-source X-ray computerized microtomography (CMT) is evaluated as a method to visualize transport processes. We conclude that CMT is adequate for visualization of transport experiments if the right conditions exist. Namely, 1) not much more than one-order-of-magnitude range in concentration data is needed for the study, 2) the pore space in the samples are greater than approximately 2–50 μm, depending on the sample size and system setup; 3) the sample is fine-grained enough so that a representative elemental volume (REV) can be contained by a 2–10 mm diameter sample, and 4) the transport process is slow enough that significant changes do not occur within the 25–50 min (and possibly less in the future) needed to collect data for one three-dimensional image. Absorption edge difference imaging (AEDI) in association with CMT is introduced as a method to enhance pore-space visualization. We successfully imaged the pore space in a low-porosity granodiorite, diorite and fine-grained granite cores and a higher-porosity soil aggregate sample. We found that the pore space important to transport in the core samples was smaller than what we were able to visualize with CMT. We also made rudimentary associations of minerals with pore-space location.
doi_str_mv 10.1016/j.jconhyd.2005.05.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68070090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169772205000793</els_id><sourcerecordid>68070090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-37c7f005fffe6433b35f48cbebfd04d2235bbcfcaab65031a044d08e58361e3d3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EotvCTwB8gVuWcex87AlVVSlIlThAJW6W44y7XiVxsJ1F6ZU_jsNGwK3SSCPbz3z4fQl5xWDLgJXvD9uDdsN-brc5QLFdAsQTsmF1xbMSYPeUbBK3y6oqz8_IeQgHAKhqqJ-TM1YC2zEGG_Lr-qi6SUXrBuoMDfOg995Fn47fM69mql0_ThG9fcCW9lanR9e7e6_G_UyN8zTukR5tmFRnH_72iV4NYXQ-0tE7jSFgoHagnfuZpVsXbJxpr5a2qgsvyDOTEr5c8wW5-3j97epTdvvl5vPV5W2mCyZixitdmfRXYwyWgvOGF0bUusHGtCDaPOdF02ijlWrKAjhTIEQLNRY1Lxnyll-Qd6e-aacfE4Yoexs0dp0a0E1BljVUSTh4FGSVSALmC1icwCRLCB6NHL3tlZ8lA7nYJA9ytUkuNsklQKS61-uAqemx_Ve1-pKAtyuggladSXJqG_7jdsnVvErcmxNnlJPq3ifm7msOjAODvBR_VvxwIjApe7ToZdAWB42t9aijbJ19ZNnfIkLA6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17460120</pqid></control><display><type>article</type><title>Evaluation of synchrotron X-ray computerized microtomography for the visualization of transport processes in low-porosity materials</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Altman, Susan J. ; Peplinski, William J. ; Rivers, Mark L.</creator><creatorcontrib>Altman, Susan J. ; Peplinski, William J. ; Rivers, Mark L.</creatorcontrib><description>Synchrotron-source X-ray computerized microtomography (CMT) is evaluated as a method to visualize transport processes. We conclude that CMT is adequate for visualization of transport experiments if the right conditions exist. Namely, 1) not much more than one-order-of-magnitude range in concentration data is needed for the study, 2) the pore space in the samples are greater than approximately 2–50 μm, depending on the sample size and system setup; 3) the sample is fine-grained enough so that a representative elemental volume (REV) can be contained by a 2–10 mm diameter sample, and 4) the transport process is slow enough that significant changes do not occur within the 25–50 min (and possibly less in the future) needed to collect data for one three-dimensional image. Absorption edge difference imaging (AEDI) in association with CMT is introduced as a method to enhance pore-space visualization. We successfully imaged the pore space in a low-porosity granodiorite, diorite and fine-grained granite cores and a higher-porosity soil aggregate sample. We found that the pore space important to transport in the core samples was smaller than what we were able to visualize with CMT. We also made rudimentary associations of minerals with pore-space location.</description><identifier>ISSN: 0169-7722</identifier><identifier>EISSN: 1873-6009</identifier><identifier>DOI: 10.1016/j.jconhyd.2005.05.004</identifier><identifier>PMID: 16019110</identifier><identifier>CODEN: JCOHE6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Absorption ; Biological Transport ; computed tomography ; Computerized microtomography ; Contaminant transport ; contaminants ; Crystalline rock ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; groundwater contamination ; groundwater flow ; Hydrogeology ; Hydrology. Hydrogeology ; image analysis ; Imaging, Three-Dimensional ; Minerals - analysis ; Minerals - chemistry ; Permeability ; Pollution, environment geology ; Pore space ; Porosity ; porous media ; Soil ; Synchrotron radiation ; synchrotron X-ray computerized microtomography ; Synchrotrons ; Tomography, X-Ray Computed - methods ; Visualization ; X-radiation ; X-ray attenuation</subject><ispartof>Journal of contaminant hydrology, 2005-07, Vol.78 (3), p.167-183</ispartof><rights>2005 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-37c7f005fffe6433b35f48cbebfd04d2235bbcfcaab65031a044d08e58361e3d3</citedby><cites>FETCH-LOGICAL-c514t-37c7f005fffe6433b35f48cbebfd04d2235bbcfcaab65031a044d08e58361e3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jconhyd.2005.05.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16972227$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16019110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Altman, Susan J.</creatorcontrib><creatorcontrib>Peplinski, William J.</creatorcontrib><creatorcontrib>Rivers, Mark L.</creatorcontrib><title>Evaluation of synchrotron X-ray computerized microtomography for the visualization of transport processes in low-porosity materials</title><title>Journal of contaminant hydrology</title><addtitle>J Contam Hydrol</addtitle><description>Synchrotron-source X-ray computerized microtomography (CMT) is evaluated as a method to visualize transport processes. We conclude that CMT is adequate for visualization of transport experiments if the right conditions exist. Namely, 1) not much more than one-order-of-magnitude range in concentration data is needed for the study, 2) the pore space in the samples are greater than approximately 2–50 μm, depending on the sample size and system setup; 3) the sample is fine-grained enough so that a representative elemental volume (REV) can be contained by a 2–10 mm diameter sample, and 4) the transport process is slow enough that significant changes do not occur within the 25–50 min (and possibly less in the future) needed to collect data for one three-dimensional image. Absorption edge difference imaging (AEDI) in association with CMT is introduced as a method to enhance pore-space visualization. We successfully imaged the pore space in a low-porosity granodiorite, diorite and fine-grained granite cores and a higher-porosity soil aggregate sample. We found that the pore space important to transport in the core samples was smaller than what we were able to visualize with CMT. We also made rudimentary associations of minerals with pore-space location.</description><subject>Absorption</subject><subject>Biological Transport</subject><subject>computed tomography</subject><subject>Computerized microtomography</subject><subject>Contaminant transport</subject><subject>contaminants</subject><subject>Crystalline rock</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>groundwater contamination</subject><subject>groundwater flow</subject><subject>Hydrogeology</subject><subject>Hydrology. Hydrogeology</subject><subject>image analysis</subject><subject>Imaging, Three-Dimensional</subject><subject>Minerals - analysis</subject><subject>Minerals - chemistry</subject><subject>Permeability</subject><subject>Pollution, environment geology</subject><subject>Pore space</subject><subject>Porosity</subject><subject>porous media</subject><subject>Soil</subject><subject>Synchrotron radiation</subject><subject>synchrotron X-ray computerized microtomography</subject><subject>Synchrotrons</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Visualization</subject><subject>X-radiation</subject><subject>X-ray attenuation</subject><issn>0169-7722</issn><issn>1873-6009</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EotvCTwB8gVuWcex87AlVVSlIlThAJW6W44y7XiVxsJ1F6ZU_jsNGwK3SSCPbz3z4fQl5xWDLgJXvD9uDdsN-brc5QLFdAsQTsmF1xbMSYPeUbBK3y6oqz8_IeQgHAKhqqJ-TM1YC2zEGG_Lr-qi6SUXrBuoMDfOg995Fn47fM69mql0_ThG9fcCW9lanR9e7e6_G_UyN8zTukR5tmFRnH_72iV4NYXQ-0tE7jSFgoHagnfuZpVsXbJxpr5a2qgsvyDOTEr5c8wW5-3j97epTdvvl5vPV5W2mCyZixitdmfRXYwyWgvOGF0bUusHGtCDaPOdF02ijlWrKAjhTIEQLNRY1Lxnyll-Qd6e-aacfE4Yoexs0dp0a0E1BljVUSTh4FGSVSALmC1icwCRLCB6NHL3tlZ8lA7nYJA9ytUkuNsklQKS61-uAqemx_Ve1-pKAtyuggladSXJqG_7jdsnVvErcmxNnlJPq3ifm7msOjAODvBR_VvxwIjApe7ToZdAWB42t9aijbJ19ZNnfIkLA6g</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Altman, Susan J.</creator><creator>Peplinski, William J.</creator><creator>Rivers, Mark L.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>20050701</creationdate><title>Evaluation of synchrotron X-ray computerized microtomography for the visualization of transport processes in low-porosity materials</title><author>Altman, Susan J. ; Peplinski, William J. ; Rivers, Mark L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-37c7f005fffe6433b35f48cbebfd04d2235bbcfcaab65031a044d08e58361e3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Absorption</topic><topic>Biological Transport</topic><topic>computed tomography</topic><topic>Computerized microtomography</topic><topic>Contaminant transport</topic><topic>contaminants</topic><topic>Crystalline rock</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>groundwater contamination</topic><topic>groundwater flow</topic><topic>Hydrogeology</topic><topic>Hydrology. Hydrogeology</topic><topic>image analysis</topic><topic>Imaging, Three-Dimensional</topic><topic>Minerals - analysis</topic><topic>Minerals - chemistry</topic><topic>Permeability</topic><topic>Pollution, environment geology</topic><topic>Pore space</topic><topic>Porosity</topic><topic>porous media</topic><topic>Soil</topic><topic>Synchrotron radiation</topic><topic>synchrotron X-ray computerized microtomography</topic><topic>Synchrotrons</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Visualization</topic><topic>X-radiation</topic><topic>X-ray attenuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Altman, Susan J.</creatorcontrib><creatorcontrib>Peplinski, William J.</creatorcontrib><creatorcontrib>Rivers, Mark L.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of contaminant hydrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altman, Susan J.</au><au>Peplinski, William J.</au><au>Rivers, Mark L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of synchrotron X-ray computerized microtomography for the visualization of transport processes in low-porosity materials</atitle><jtitle>Journal of contaminant hydrology</jtitle><addtitle>J Contam Hydrol</addtitle><date>2005-07-01</date><risdate>2005</risdate><volume>78</volume><issue>3</issue><spage>167</spage><epage>183</epage><pages>167-183</pages><issn>0169-7722</issn><eissn>1873-6009</eissn><coden>JCOHE6</coden><abstract>Synchrotron-source X-ray computerized microtomography (CMT) is evaluated as a method to visualize transport processes. We conclude that CMT is adequate for visualization of transport experiments if the right conditions exist. Namely, 1) not much more than one-order-of-magnitude range in concentration data is needed for the study, 2) the pore space in the samples are greater than approximately 2–50 μm, depending on the sample size and system setup; 3) the sample is fine-grained enough so that a representative elemental volume (REV) can be contained by a 2–10 mm diameter sample, and 4) the transport process is slow enough that significant changes do not occur within the 25–50 min (and possibly less in the future) needed to collect data for one three-dimensional image. Absorption edge difference imaging (AEDI) in association with CMT is introduced as a method to enhance pore-space visualization. We successfully imaged the pore space in a low-porosity granodiorite, diorite and fine-grained granite cores and a higher-porosity soil aggregate sample. We found that the pore space important to transport in the core samples was smaller than what we were able to visualize with CMT. We also made rudimentary associations of minerals with pore-space location.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>16019110</pmid><doi>10.1016/j.jconhyd.2005.05.004</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-7722
ispartof Journal of contaminant hydrology, 2005-07, Vol.78 (3), p.167-183
issn 0169-7722
1873-6009
language eng
recordid cdi_proquest_miscellaneous_68070090
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Absorption
Biological Transport
computed tomography
Computerized microtomography
Contaminant transport
contaminants
Crystalline rock
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
groundwater contamination
groundwater flow
Hydrogeology
Hydrology. Hydrogeology
image analysis
Imaging, Three-Dimensional
Minerals - analysis
Minerals - chemistry
Permeability
Pollution, environment geology
Pore space
Porosity
porous media
Soil
Synchrotron radiation
synchrotron X-ray computerized microtomography
Synchrotrons
Tomography, X-Ray Computed - methods
Visualization
X-radiation
X-ray attenuation
title Evaluation of synchrotron X-ray computerized microtomography for the visualization of transport processes in low-porosity materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20synchrotron%20X-ray%20computerized%20microtomography%20for%20the%20visualization%20of%20transport%20processes%20in%20low-porosity%20materials&rft.jtitle=Journal%20of%20contaminant%20hydrology&rft.au=Altman,%20Susan%20J.&rft.date=2005-07-01&rft.volume=78&rft.issue=3&rft.spage=167&rft.epage=183&rft.pages=167-183&rft.issn=0169-7722&rft.eissn=1873-6009&rft.coden=JCOHE6&rft_id=info:doi/10.1016/j.jconhyd.2005.05.004&rft_dat=%3Cproquest_cross%3E68070090%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17460120&rft_id=info:pmid/16019110&rft_els_id=S0169772205000793&rfr_iscdi=true