GENTEX, a general multiscale model for in vivo tissue exchanges and intraorgan metabolism
Endothelial cells lining myocardial capillaries not only impede transport of blood solutes to the contractile cells, but also take up and release substrates, competing with myocytes. Solutes permeating this barrier exhibit concentration gradients along the capillary. This paper introduces a generic...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2006-06, Vol.364 (1843), p.1423-1442 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1442 |
---|---|
container_issue | 1843 |
container_start_page | 1423 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 364 |
creator | Bassingthwaighte, James B Raymond, Gary M Ploger, James D Schwartz, Lisa M Bukowski, Thomas R |
description | Endothelial cells lining myocardial capillaries not only impede transport of blood solutes to the contractile cells, but also take up and release substrates, competing with myocytes. Solutes permeating this barrier exhibit concentration gradients along the capillary. This paper introduces a generic model, GENTEX, to characterize blood-tissue exchanges. GENTEX is a whole organ model of the vascular network providing intraorgan flow heterogeneity and accounts for substrate transmembrane transport, binding and metabolism in erythrocytes, plasma, endothelial cells, interstitial space and cardiomyocytes. The model is tested here for the analysis of multiple tracer indicator dilution data on purine nucleoside metabolism in the isolated Krebs-Henseleit-perfused non-working hearts. It has been also used for analysing NMR contrast data for regional myocardial flows and for positron emission tomographic studies of cardiac receptor kinetics. The facilitating transporters, binding sites and enzymatic reactions are nonlinear elements and allow competition between substrates and a reaction sequence of up to five substrate-product reactions in a metabolic network. Strategies for application start with experiment designs incorporating inert reference tracers. For the estimation of endothelial and sarcolemmal permeability-surface area products and metabolism of the substrates and products, model solutions were optimized to fit the data from pairs of tracer injections (of either inosine or adenosine, plus the reference tracers) injected under the same circumstances a few minutes later. The results provide a self-consistent description of nucleoside metabolism in a beating well-perfused rabbit heart, and illustrate the power of the model to fit multiple datasets simultaneously. |
doi_str_mv | 10.1098/rsta.2006.1779 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68065650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25190276</jstor_id><sourcerecordid>25190276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-7c2146c9f98b34a3d9bbec5c205ce71f48358ca342c37547189281a6503f91e03</originalsourceid><addsrcrecordid>eNp9UU2P0zAUjBCIXQpXbiCfOJHirzj2BbHaLbugChAUtJws13Vad5O42EnZ8utxkqpQIfYURzNv5s2bJHmK4BhBwV_50KgxhpCNUZ6Le8kpojlKsWD4fnwTRtMMkuuT5FEIawgRYhl-mJwgljNGMnKafL-cfJhNrl8CBZamNl6VoGrLxgatSgMqtzAlKJwHtgZbu3UgIqE1wNzqlaqXJgBVLyLYeOX8UtWgMo2au9KG6nHyoFBlME_231Hy9e1kdn6VTj9evjs_m6aaCdSkucaIMi0KweeEKrIQ87nRmcYw0yZHBeUk41oRijXJsxiOC8yRYjFWIZCBZJS8HnQ37bwyC226ZUq58bZSfiedsvIYqe1KLt1WUsQEhjQKvNgLePejNaGRVYxvylLVxrVBMg5Z1vmNkvFA1N6F4E1xMEFQdm3Irg3ZtSG7NuLA879X-0Pfnz8SyEDwbhdv5LQ1zU6uXevr-Pt_2Zu7pj5_mZ1tY_MWcUok5ARBhuLp5C-7GaQiKPseZU85lv_X7dngtg6N84cMOEMC4pxFPB1wGxpze8CVv5Esj5XJb5xKfvH-gtBPV3Ia-W8G_souVz-tN_IoRu-uXd3EtvpF-xURxUQWbRl7XRRRAt0p4XabfcrDMPkNuDD8pg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68065650</pqid></control><display><type>article</type><title>GENTEX, a general multiscale model for in vivo tissue exchanges and intraorgan metabolism</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR Mathematics & Statistics</source><creator>Bassingthwaighte, James B ; Raymond, Gary M ; Ploger, James D ; Schwartz, Lisa M ; Bukowski, Thomas R</creator><creatorcontrib>Bassingthwaighte, James B ; Raymond, Gary M ; Ploger, James D ; Schwartz, Lisa M ; Bukowski, Thomas R</creatorcontrib><description>Endothelial cells lining myocardial capillaries not only impede transport of blood solutes to the contractile cells, but also take up and release substrates, competing with myocytes. Solutes permeating this barrier exhibit concentration gradients along the capillary. This paper introduces a generic model, GENTEX, to characterize blood-tissue exchanges. GENTEX is a whole organ model of the vascular network providing intraorgan flow heterogeneity and accounts for substrate transmembrane transport, binding and metabolism in erythrocytes, plasma, endothelial cells, interstitial space and cardiomyocytes. The model is tested here for the analysis of multiple tracer indicator dilution data on purine nucleoside metabolism in the isolated Krebs-Henseleit-perfused non-working hearts. It has been also used for analysing NMR contrast data for regional myocardial flows and for positron emission tomographic studies of cardiac receptor kinetics. The facilitating transporters, binding sites and enzymatic reactions are nonlinear elements and allow competition between substrates and a reaction sequence of up to five substrate-product reactions in a metabolic network. Strategies for application start with experiment designs incorporating inert reference tracers. For the estimation of endothelial and sarcolemmal permeability-surface area products and metabolism of the substrates and products, model solutions were optimized to fit the data from pairs of tracer injections (of either inosine or adenosine, plus the reference tracers) injected under the same circumstances a few minutes later. The results provide a self-consistent description of nucleoside metabolism in a beating well-perfused rabbit heart, and illustrate the power of the model to fit multiple datasets simultaneously.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2006.1779</identifier><identifier>PMID: 16766353</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Animals ; Axially Distributed Blood-Tissue Exchange Processes ; Biological Transport, Active - physiology ; Capillaries ; Capillary Permeability - physiology ; Cellular metabolism ; Computer Simulation ; Constrained Parameter Estimation ; Convection-Diffusion-Reaction Model ; Coronary Vessels - metabolism ; Endothelial cells ; Endothelium, Vascular - metabolism ; Energy Metabolism - physiology ; GENTEX ; Guinea Pigs ; Heart ; Kinetics ; Modeling ; Models, Biological ; Multienzyme Complexes - metabolism ; Myocardium ; Myocardium - metabolism ; Nucleosides - metabolism ; Parametric models ; Purine Nucleoside Metabolism ; Purine nucleosides ; Rabbits ; Simultaneous Optimization ; Solutes</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2006-06, Vol.364 (1843), p.1423-1442</ispartof><rights>Copyright 2006 The Royal Society</rights><rights>2006 The Royal Society</rights><rights>2006 The Royal Society 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-7c2146c9f98b34a3d9bbec5c205ce71f48358ca342c37547189281a6503f91e03</citedby><cites>FETCH-LOGICAL-c691t-7c2146c9f98b34a3d9bbec5c205ce71f48358ca342c37547189281a6503f91e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25190276$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25190276$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,828,881,27903,27904,57999,58232</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16766353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bassingthwaighte, James B</creatorcontrib><creatorcontrib>Raymond, Gary M</creatorcontrib><creatorcontrib>Ploger, James D</creatorcontrib><creatorcontrib>Schwartz, Lisa M</creatorcontrib><creatorcontrib>Bukowski, Thomas R</creatorcontrib><title>GENTEX, a general multiscale model for in vivo tissue exchanges and intraorgan metabolism</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>PHIL TRANS R SOC A</addtitle><description>Endothelial cells lining myocardial capillaries not only impede transport of blood solutes to the contractile cells, but also take up and release substrates, competing with myocytes. Solutes permeating this barrier exhibit concentration gradients along the capillary. This paper introduces a generic model, GENTEX, to characterize blood-tissue exchanges. GENTEX is a whole organ model of the vascular network providing intraorgan flow heterogeneity and accounts for substrate transmembrane transport, binding and metabolism in erythrocytes, plasma, endothelial cells, interstitial space and cardiomyocytes. The model is tested here for the analysis of multiple tracer indicator dilution data on purine nucleoside metabolism in the isolated Krebs-Henseleit-perfused non-working hearts. It has been also used for analysing NMR contrast data for regional myocardial flows and for positron emission tomographic studies of cardiac receptor kinetics. The facilitating transporters, binding sites and enzymatic reactions are nonlinear elements and allow competition between substrates and a reaction sequence of up to five substrate-product reactions in a metabolic network. Strategies for application start with experiment designs incorporating inert reference tracers. For the estimation of endothelial and sarcolemmal permeability-surface area products and metabolism of the substrates and products, model solutions were optimized to fit the data from pairs of tracer injections (of either inosine or adenosine, plus the reference tracers) injected under the same circumstances a few minutes later. The results provide a self-consistent description of nucleoside metabolism in a beating well-perfused rabbit heart, and illustrate the power of the model to fit multiple datasets simultaneously.</description><subject>Animals</subject><subject>Axially Distributed Blood-Tissue Exchange Processes</subject><subject>Biological Transport, Active - physiology</subject><subject>Capillaries</subject><subject>Capillary Permeability - physiology</subject><subject>Cellular metabolism</subject><subject>Computer Simulation</subject><subject>Constrained Parameter Estimation</subject><subject>Convection-Diffusion-Reaction Model</subject><subject>Coronary Vessels - metabolism</subject><subject>Endothelial cells</subject><subject>Endothelium, Vascular - metabolism</subject><subject>Energy Metabolism - physiology</subject><subject>GENTEX</subject><subject>Guinea Pigs</subject><subject>Heart</subject><subject>Kinetics</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Myocardium</subject><subject>Myocardium - metabolism</subject><subject>Nucleosides - metabolism</subject><subject>Parametric models</subject><subject>Purine Nucleoside Metabolism</subject><subject>Purine nucleosides</subject><subject>Rabbits</subject><subject>Simultaneous Optimization</subject><subject>Solutes</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU2P0zAUjBCIXQpXbiCfOJHirzj2BbHaLbugChAUtJws13Vad5O42EnZ8utxkqpQIfYURzNv5s2bJHmK4BhBwV_50KgxhpCNUZ6Le8kpojlKsWD4fnwTRtMMkuuT5FEIawgRYhl-mJwgljNGMnKafL-cfJhNrl8CBZamNl6VoGrLxgatSgMqtzAlKJwHtgZbu3UgIqE1wNzqlaqXJgBVLyLYeOX8UtWgMo2au9KG6nHyoFBlME_231Hy9e1kdn6VTj9evjs_m6aaCdSkucaIMi0KweeEKrIQ87nRmcYw0yZHBeUk41oRijXJsxiOC8yRYjFWIZCBZJS8HnQ37bwyC226ZUq58bZSfiedsvIYqe1KLt1WUsQEhjQKvNgLePejNaGRVYxvylLVxrVBMg5Z1vmNkvFA1N6F4E1xMEFQdm3Irg3ZtSG7NuLA879X-0Pfnz8SyEDwbhdv5LQ1zU6uXevr-Pt_2Zu7pj5_mZ1tY_MWcUok5ARBhuLp5C-7GaQiKPseZU85lv_X7dngtg6N84cMOEMC4pxFPB1wGxpze8CVv5Esj5XJb5xKfvH-gtBPV3Ia-W8G_souVz-tN_IoRu-uXd3EtvpF-xURxUQWbRl7XRRRAt0p4XabfcrDMPkNuDD8pg</recordid><startdate>20060615</startdate><enddate>20060615</enddate><creator>Bassingthwaighte, James B</creator><creator>Raymond, Gary M</creator><creator>Ploger, James D</creator><creator>Schwartz, Lisa M</creator><creator>Bukowski, Thomas R</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060615</creationdate><title>GENTEX, a general multiscale model for in vivo tissue exchanges and intraorgan metabolism</title><author>Bassingthwaighte, James B ; Raymond, Gary M ; Ploger, James D ; Schwartz, Lisa M ; Bukowski, Thomas R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-7c2146c9f98b34a3d9bbec5c205ce71f48358ca342c37547189281a6503f91e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Axially Distributed Blood-Tissue Exchange Processes</topic><topic>Biological Transport, Active - physiology</topic><topic>Capillaries</topic><topic>Capillary Permeability - physiology</topic><topic>Cellular metabolism</topic><topic>Computer Simulation</topic><topic>Constrained Parameter Estimation</topic><topic>Convection-Diffusion-Reaction Model</topic><topic>Coronary Vessels - metabolism</topic><topic>Endothelial cells</topic><topic>Endothelium, Vascular - metabolism</topic><topic>Energy Metabolism - physiology</topic><topic>GENTEX</topic><topic>Guinea Pigs</topic><topic>Heart</topic><topic>Kinetics</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Myocardium</topic><topic>Myocardium - metabolism</topic><topic>Nucleosides - metabolism</topic><topic>Parametric models</topic><topic>Purine Nucleoside Metabolism</topic><topic>Purine nucleosides</topic><topic>Rabbits</topic><topic>Simultaneous Optimization</topic><topic>Solutes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bassingthwaighte, James B</creatorcontrib><creatorcontrib>Raymond, Gary M</creatorcontrib><creatorcontrib>Ploger, James D</creatorcontrib><creatorcontrib>Schwartz, Lisa M</creatorcontrib><creatorcontrib>Bukowski, Thomas R</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bassingthwaighte, James B</au><au>Raymond, Gary M</au><au>Ploger, James D</au><au>Schwartz, Lisa M</au><au>Bukowski, Thomas R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GENTEX, a general multiscale model for in vivo tissue exchanges and intraorgan metabolism</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><addtitle>PHIL TRANS R SOC A</addtitle><date>2006-06-15</date><risdate>2006</risdate><volume>364</volume><issue>1843</issue><spage>1423</spage><epage>1442</epage><pages>1423-1442</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Endothelial cells lining myocardial capillaries not only impede transport of blood solutes to the contractile cells, but also take up and release substrates, competing with myocytes. Solutes permeating this barrier exhibit concentration gradients along the capillary. This paper introduces a generic model, GENTEX, to characterize blood-tissue exchanges. GENTEX is a whole organ model of the vascular network providing intraorgan flow heterogeneity and accounts for substrate transmembrane transport, binding and metabolism in erythrocytes, plasma, endothelial cells, interstitial space and cardiomyocytes. The model is tested here for the analysis of multiple tracer indicator dilution data on purine nucleoside metabolism in the isolated Krebs-Henseleit-perfused non-working hearts. It has been also used for analysing NMR contrast data for regional myocardial flows and for positron emission tomographic studies of cardiac receptor kinetics. The facilitating transporters, binding sites and enzymatic reactions are nonlinear elements and allow competition between substrates and a reaction sequence of up to five substrate-product reactions in a metabolic network. Strategies for application start with experiment designs incorporating inert reference tracers. For the estimation of endothelial and sarcolemmal permeability-surface area products and metabolism of the substrates and products, model solutions were optimized to fit the data from pairs of tracer injections (of either inosine or adenosine, plus the reference tracers) injected under the same circumstances a few minutes later. The results provide a self-consistent description of nucleoside metabolism in a beating well-perfused rabbit heart, and illustrate the power of the model to fit multiple datasets simultaneously.</abstract><cop>London</cop><pub>The Royal Society</pub><pmid>16766353</pmid><doi>10.1098/rsta.2006.1779</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2006-06, Vol.364 (1843), p.1423-1442 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_proquest_miscellaneous_68065650 |
source | MEDLINE; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR Mathematics & Statistics |
subjects | Animals Axially Distributed Blood-Tissue Exchange Processes Biological Transport, Active - physiology Capillaries Capillary Permeability - physiology Cellular metabolism Computer Simulation Constrained Parameter Estimation Convection-Diffusion-Reaction Model Coronary Vessels - metabolism Endothelial cells Endothelium, Vascular - metabolism Energy Metabolism - physiology GENTEX Guinea Pigs Heart Kinetics Modeling Models, Biological Multienzyme Complexes - metabolism Myocardium Myocardium - metabolism Nucleosides - metabolism Parametric models Purine Nucleoside Metabolism Purine nucleosides Rabbits Simultaneous Optimization Solutes |
title | GENTEX, a general multiscale model for in vivo tissue exchanges and intraorgan metabolism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GENTEX,%20a%20general%20multiscale%20model%20for%20in%20vivo%20tissue%20exchanges%20and%20intraorgan%20metabolism&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Bassingthwaighte,%20James%20B&rft.date=2006-06-15&rft.volume=364&rft.issue=1843&rft.spage=1423&rft.epage=1442&rft.pages=1423-1442&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2006.1779&rft_dat=%3Cjstor_proqu%3E25190276%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68065650&rft_id=info:pmid/16766353&rft_jstor_id=25190276&rfr_iscdi=true |