LMW-GS genes in Agropyron elongatum and their potential value in wheat breeding

To study the usefulness of low-molecular-weight glutenin subunits (LMW-GS) of Agropyron elongatum (Host) Nevski to wheat (Triticum aestivum L.) quality improvement, we characterized LMW-GS genes of A. elongatum. Nine LMW-GS genes of A. elongatum, which were named AeL1 to AeL9, were cloned by genomic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2005-07, Vol.111 (2), p.272-280
Hauptverfasser: Luo, Z, Chen, F, Feng, D, Xia, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To study the usefulness of low-molecular-weight glutenin subunits (LMW-GS) of Agropyron elongatum (Host) Nevski to wheat (Triticum aestivum L.) quality improvement, we characterized LMW-GS genes of A. elongatum. Nine LMW-GS genes of A. elongatum, which were named AeL1 to AeL9, were cloned by genomic PCR. After sequencing, we obtained complete open reading frames from AeL2 to AeL8 and partial genes of AeL1 and AeL9. All nine sequences are homoeologous to those of wheat and related grasses. Comparison of the deduced amino acid sequences with those of published LMW-GS suggests that the basic structures of all the subunits are very similar. However, except for AeL4 and AeL5, which contain the identical N-terminal sequence with LMW-m, other LMW-GS sequences separated from A. elongatum cannot be classified according to previous criteria for the three types: LMW-m (methionine), LMW-s (serine), and LMW-i (isoleucine), and then 12 groups. In addition, there are some characters in the LMW-GS sequences of A. elongatum: AeL2, AeL3, and AeL6 involve a Cys residue in the signal peptide respectively, which is absent in most of LMW-GS; AeL3, AeL6, AeL8, and AeL9 start their first Cys residues in the N-terminal repetitive domains, respectively; both AeL2 and AeL5 have nine Cys residues, with an extra Cys residue in the N-terminal repetitive domain and the repetitive and glutamine-rich domain; AeL2, AeL3, AeL6, and AeL9 comprise long repetitive domains. Phylogenetic analysis indicates that there is a relatively weak sequence identity between the LMW-GS genes from A. elongatum cloned in this study and those reported from other plants. Three LMW-GS sequences, AeL2, AeL3, and AeL6, are clustered to Glu-A3 from wheat than to those from other plants. The possible use of these genes in relation to the high quality of hybrid wheat is discussed.
ISSN:0040-5752
1432-2242
DOI:10.1007/s00122-005-2021-9