Differentiated Growth of Human Renal Tubule Cells on Thin-Film and Nanostructured Materials

Over 300,000 Americans are dependent on hemodialysis as treatment for renal failure, and kidney transplantation is limited by scarcity of donor organs. This shortage has prompted research into tissue engineering of renal replacement therapy. Existing bioartificial kidneys are large and their use lab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ASAIO journal (1992) 2006-05, Vol.52 (3), p.221-227
Hauptverfasser: Fissell, William H, Manley, Sargum, Westover, Angela, Humes, H David, Fleischman, Aaron J, Roy, Shuvo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 227
container_issue 3
container_start_page 221
container_title ASAIO journal (1992)
container_volume 52
creator Fissell, William H
Manley, Sargum
Westover, Angela
Humes, H David
Fleischman, Aaron J
Roy, Shuvo
description Over 300,000 Americans are dependent on hemodialysis as treatment for renal failure, and kidney transplantation is limited by scarcity of donor organs. This shortage has prompted research into tissue engineering of renal replacement therapy. Existing bioartificial kidneys are large and their use labor intensive, but they have shown improved survival compared to conventional therapy in preclinical studies and an US Food and Drug Administration–approved phase 2 clinical trial. This hybrid technology will require miniaturization of hemofilters, cell culture substrates, sensors, and integration of control electronics. Using the same harvesting and isolation techniques used in preparing bioartificial kidneys for clinical use, we characterized human renal tubule cell growth on a variety of silicon and related thin-film material substrates commonly used in the construction of microelectromechanical systems (MEMS), as well as novel silicon nanopore membranes (SNMs). Human cortical tubular epithelial cells (HCTC) were seeded onto samples of single-crystal silicon, polycrystalline silicon, silicon dioxide, silicon nitride, SU-8 photoresist, SNMs, and polyester tissue culture inserts, and grown to confluence. The cells formed confluent monolayers with tight junctions and central cilia. Transepithelial resistances were similar between SNMs and polyester membranes. The differentiated growth of human tubular epithelial cells on MEMS materials strongly suggests that miniaturization of the existing bioartificial kidney will be feasible, paving the way for widespread application of this novel technology.
doi_str_mv 10.1097/01.mat.0000205228.30516.9c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68051588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68051588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4142-282173c150fb0512f0616c9eb7ad606e34eb63760f7a23555d9e6c2133f8c4c3</originalsourceid><addsrcrecordid>eNpFkE1v3CAQhlHVqknT_oUK9dCbnQEMxr1Vm-ZDShOp2kOkHBDGg9YttlMwWvXfl2RXCpcB5p13Zh5CvjCoGXTtObB6smsN5XCQnOtagGSq7twbcsqk0FXXiIe35Q5SV7xj6oR8SOk3QEkK9p6cMNUqaEGfkseL0XuMOK-jXXGgV3HZrzu6eHqdJzvTXzjbQLe5zwHpBkNIdJnpdjfO1eUYJmrngd7ZeUlrzG7NsVj8LEZxtCF9JO98CfjpGM_I9vLHdnNd3d5f3Wy-31auYQ2vuOasFY5J8H3Zg3tQTLkO-9YOChSKBnslysC-tVxIKYcOleNMCK9d48QZ-XqwfYrL34xpNdOYXBnVzrjkZJQurlLrIvx2ELq4pBTRm6c4Tjb-MwzMM1kDzBSy5pWseSFruucun49dcj_h8Fp6RFkEzUGwX0IBkP6EvMdodmjDujtYNhoqDqBAllf18iX-A1m7hK4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68051588</pqid></control><display><type>article</type><title>Differentiated Growth of Human Renal Tubule Cells on Thin-Film and Nanostructured Materials</title><source>MEDLINE</source><source>Journals@Ovid LWW Legacy Archive</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Complete</source><creator>Fissell, William H ; Manley, Sargum ; Westover, Angela ; Humes, H David ; Fleischman, Aaron J ; Roy, Shuvo</creator><creatorcontrib>Fissell, William H ; Manley, Sargum ; Westover, Angela ; Humes, H David ; Fleischman, Aaron J ; Roy, Shuvo</creatorcontrib><description>Over 300,000 Americans are dependent on hemodialysis as treatment for renal failure, and kidney transplantation is limited by scarcity of donor organs. This shortage has prompted research into tissue engineering of renal replacement therapy. Existing bioartificial kidneys are large and their use labor intensive, but they have shown improved survival compared to conventional therapy in preclinical studies and an US Food and Drug Administration–approved phase 2 clinical trial. This hybrid technology will require miniaturization of hemofilters, cell culture substrates, sensors, and integration of control electronics. Using the same harvesting and isolation techniques used in preparing bioartificial kidneys for clinical use, we characterized human renal tubule cell growth on a variety of silicon and related thin-film material substrates commonly used in the construction of microelectromechanical systems (MEMS), as well as novel silicon nanopore membranes (SNMs). Human cortical tubular epithelial cells (HCTC) were seeded onto samples of single-crystal silicon, polycrystalline silicon, silicon dioxide, silicon nitride, SU-8 photoresist, SNMs, and polyester tissue culture inserts, and grown to confluence. The cells formed confluent monolayers with tight junctions and central cilia. Transepithelial resistances were similar between SNMs and polyester membranes. The differentiated growth of human tubular epithelial cells on MEMS materials strongly suggests that miniaturization of the existing bioartificial kidney will be feasible, paving the way for widespread application of this novel technology.</description><identifier>ISSN: 1058-2916</identifier><identifier>EISSN: 1538-943X</identifier><identifier>DOI: 10.1097/01.mat.0000205228.30516.9c</identifier><identifier>PMID: 16760708</identifier><language>eng</language><publisher>United States: Copyright by the American Society for Artificial Internal Organs</publisher><subject>Biocompatible Materials - chemistry ; Biomedical Engineering ; Cell Culture Techniques ; Cells, Cultured ; Electric Impedance ; Humans ; Immunohistochemistry ; Kidney Cortex - cytology ; Kidney Tubules - cytology ; Kidney Tubules - growth &amp; development ; Membranes, Artificial ; Nanostructures - ultrastructure ; Nanotechnology ; Polyesters - chemistry ; Porosity ; Silicon Compounds - chemistry ; Substrate Specificity</subject><ispartof>ASAIO journal (1992), 2006-05, Vol.52 (3), p.221-227</ispartof><rights>Copyright © 2006 by the American Society for Artificial Internal Organs</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4142-282173c150fb0512f0616c9eb7ad606e34eb63760f7a23555d9e6c2133f8c4c3</citedby><cites>FETCH-LOGICAL-c4142-282173c150fb0512f0616c9eb7ad606e34eb63760f7a23555d9e6c2133f8c4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttp://ovidsp.ovid.com/ovidweb.cgi?T=JS&amp;NEWS=n&amp;CSC=Y&amp;PAGE=fulltext&amp;D=ovft&amp;AN=00002480-200605000-00002$$EHTML$$P50$$Gwolterskluwer$$H</linktohtml><link.rule.ids>314,776,780,4595,27901,27902,65206</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16760708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fissell, William H</creatorcontrib><creatorcontrib>Manley, Sargum</creatorcontrib><creatorcontrib>Westover, Angela</creatorcontrib><creatorcontrib>Humes, H David</creatorcontrib><creatorcontrib>Fleischman, Aaron J</creatorcontrib><creatorcontrib>Roy, Shuvo</creatorcontrib><title>Differentiated Growth of Human Renal Tubule Cells on Thin-Film and Nanostructured Materials</title><title>ASAIO journal (1992)</title><addtitle>ASAIO J</addtitle><description>Over 300,000 Americans are dependent on hemodialysis as treatment for renal failure, and kidney transplantation is limited by scarcity of donor organs. This shortage has prompted research into tissue engineering of renal replacement therapy. Existing bioartificial kidneys are large and their use labor intensive, but they have shown improved survival compared to conventional therapy in preclinical studies and an US Food and Drug Administration–approved phase 2 clinical trial. This hybrid technology will require miniaturization of hemofilters, cell culture substrates, sensors, and integration of control electronics. Using the same harvesting and isolation techniques used in preparing bioartificial kidneys for clinical use, we characterized human renal tubule cell growth on a variety of silicon and related thin-film material substrates commonly used in the construction of microelectromechanical systems (MEMS), as well as novel silicon nanopore membranes (SNMs). Human cortical tubular epithelial cells (HCTC) were seeded onto samples of single-crystal silicon, polycrystalline silicon, silicon dioxide, silicon nitride, SU-8 photoresist, SNMs, and polyester tissue culture inserts, and grown to confluence. The cells formed confluent monolayers with tight junctions and central cilia. Transepithelial resistances were similar between SNMs and polyester membranes. The differentiated growth of human tubular epithelial cells on MEMS materials strongly suggests that miniaturization of the existing bioartificial kidney will be feasible, paving the way for widespread application of this novel technology.</description><subject>Biocompatible Materials - chemistry</subject><subject>Biomedical Engineering</subject><subject>Cell Culture Techniques</subject><subject>Cells, Cultured</subject><subject>Electric Impedance</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Kidney Cortex - cytology</subject><subject>Kidney Tubules - cytology</subject><subject>Kidney Tubules - growth &amp; development</subject><subject>Membranes, Artificial</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology</subject><subject>Polyesters - chemistry</subject><subject>Porosity</subject><subject>Silicon Compounds - chemistry</subject><subject>Substrate Specificity</subject><issn>1058-2916</issn><issn>1538-943X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1v3CAQhlHVqknT_oUK9dCbnQEMxr1Vm-ZDShOp2kOkHBDGg9YttlMwWvXfl2RXCpcB5p13Zh5CvjCoGXTtObB6smsN5XCQnOtagGSq7twbcsqk0FXXiIe35Q5SV7xj6oR8SOk3QEkK9p6cMNUqaEGfkseL0XuMOK-jXXGgV3HZrzu6eHqdJzvTXzjbQLe5zwHpBkNIdJnpdjfO1eUYJmrngd7ZeUlrzG7NsVj8LEZxtCF9JO98CfjpGM_I9vLHdnNd3d5f3Wy-31auYQ2vuOasFY5J8H3Zg3tQTLkO-9YOChSKBnslysC-tVxIKYcOleNMCK9d48QZ-XqwfYrL34xpNdOYXBnVzrjkZJQurlLrIvx2ELq4pBTRm6c4Tjb-MwzMM1kDzBSy5pWseSFruucun49dcj_h8Fp6RFkEzUGwX0IBkP6EvMdodmjDujtYNhoqDqBAllf18iX-A1m7hK4</recordid><startdate>200605</startdate><enddate>200605</enddate><creator>Fissell, William H</creator><creator>Manley, Sargum</creator><creator>Westover, Angela</creator><creator>Humes, H David</creator><creator>Fleischman, Aaron J</creator><creator>Roy, Shuvo</creator><general>Copyright by the American Society for Artificial Internal Organs</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200605</creationdate><title>Differentiated Growth of Human Renal Tubule Cells on Thin-Film and Nanostructured Materials</title><author>Fissell, William H ; Manley, Sargum ; Westover, Angela ; Humes, H David ; Fleischman, Aaron J ; Roy, Shuvo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4142-282173c150fb0512f0616c9eb7ad606e34eb63760f7a23555d9e6c2133f8c4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biocompatible Materials - chemistry</topic><topic>Biomedical Engineering</topic><topic>Cell Culture Techniques</topic><topic>Cells, Cultured</topic><topic>Electric Impedance</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Kidney Cortex - cytology</topic><topic>Kidney Tubules - cytology</topic><topic>Kidney Tubules - growth &amp; development</topic><topic>Membranes, Artificial</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology</topic><topic>Polyesters - chemistry</topic><topic>Porosity</topic><topic>Silicon Compounds - chemistry</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fissell, William H</creatorcontrib><creatorcontrib>Manley, Sargum</creatorcontrib><creatorcontrib>Westover, Angela</creatorcontrib><creatorcontrib>Humes, H David</creatorcontrib><creatorcontrib>Fleischman, Aaron J</creatorcontrib><creatorcontrib>Roy, Shuvo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ASAIO journal (1992)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fissell, William H</au><au>Manley, Sargum</au><au>Westover, Angela</au><au>Humes, H David</au><au>Fleischman, Aaron J</au><au>Roy, Shuvo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentiated Growth of Human Renal Tubule Cells on Thin-Film and Nanostructured Materials</atitle><jtitle>ASAIO journal (1992)</jtitle><addtitle>ASAIO J</addtitle><date>2006-05</date><risdate>2006</risdate><volume>52</volume><issue>3</issue><spage>221</spage><epage>227</epage><pages>221-227</pages><issn>1058-2916</issn><eissn>1538-943X</eissn><abstract>Over 300,000 Americans are dependent on hemodialysis as treatment for renal failure, and kidney transplantation is limited by scarcity of donor organs. This shortage has prompted research into tissue engineering of renal replacement therapy. Existing bioartificial kidneys are large and their use labor intensive, but they have shown improved survival compared to conventional therapy in preclinical studies and an US Food and Drug Administration–approved phase 2 clinical trial. This hybrid technology will require miniaturization of hemofilters, cell culture substrates, sensors, and integration of control electronics. Using the same harvesting and isolation techniques used in preparing bioartificial kidneys for clinical use, we characterized human renal tubule cell growth on a variety of silicon and related thin-film material substrates commonly used in the construction of microelectromechanical systems (MEMS), as well as novel silicon nanopore membranes (SNMs). Human cortical tubular epithelial cells (HCTC) were seeded onto samples of single-crystal silicon, polycrystalline silicon, silicon dioxide, silicon nitride, SU-8 photoresist, SNMs, and polyester tissue culture inserts, and grown to confluence. The cells formed confluent monolayers with tight junctions and central cilia. Transepithelial resistances were similar between SNMs and polyester membranes. The differentiated growth of human tubular epithelial cells on MEMS materials strongly suggests that miniaturization of the existing bioartificial kidney will be feasible, paving the way for widespread application of this novel technology.</abstract><cop>United States</cop><pub>Copyright by the American Society for Artificial Internal Organs</pub><pmid>16760708</pmid><doi>10.1097/01.mat.0000205228.30516.9c</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-2916
ispartof ASAIO journal (1992), 2006-05, Vol.52 (3), p.221-227
issn 1058-2916
1538-943X
language eng
recordid cdi_proquest_miscellaneous_68051588
source MEDLINE; Journals@Ovid LWW Legacy Archive; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Complete
subjects Biocompatible Materials - chemistry
Biomedical Engineering
Cell Culture Techniques
Cells, Cultured
Electric Impedance
Humans
Immunohistochemistry
Kidney Cortex - cytology
Kidney Tubules - cytology
Kidney Tubules - growth & development
Membranes, Artificial
Nanostructures - ultrastructure
Nanotechnology
Polyesters - chemistry
Porosity
Silicon Compounds - chemistry
Substrate Specificity
title Differentiated Growth of Human Renal Tubule Cells on Thin-Film and Nanostructured Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentiated%20Growth%20of%20Human%20Renal%20Tubule%20Cells%20on%20Thin-Film%20and%20Nanostructured%20Materials&rft.jtitle=ASAIO%20journal%20(1992)&rft.au=Fissell,%20William%20H&rft.date=2006-05&rft.volume=52&rft.issue=3&rft.spage=221&rft.epage=227&rft.pages=221-227&rft.issn=1058-2916&rft.eissn=1538-943X&rft_id=info:doi/10.1097/01.mat.0000205228.30516.9c&rft_dat=%3Cproquest_cross%3E68051588%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68051588&rft_id=info:pmid/16760708&rfr_iscdi=true