How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response
Actin-crosslinking proteins organize actin filaments into dynamic and complex subcellular scaffolds that orchestrate important mechanical functions, including cell motility and adhesion. Recent mutation studies have shown that individual crosslinking proteins often play seemingly non-essential roles...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2005-08, Vol.334 (1), p.183-192 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 192 |
---|---|
container_issue | 1 |
container_start_page | 183 |
container_title | Biochemical and biophysical research communications |
container_volume | 334 |
creator | Tseng, Yiider Kole, Thomas P. Lee, Jerry S.H. Fedorov, Elena Almo, Steven C. Schafer, Benjamin W. Wirtz, Denis |
description | Actin-crosslinking proteins organize actin filaments into dynamic and complex subcellular scaffolds that orchestrate important mechanical functions, including cell motility and adhesion. Recent mutation studies have shown that individual crosslinking proteins often play seemingly non-essential roles, leading to the hypothesis that they have considerable redundancy in function. We report live-cell, in vitro, and theoretical studies testing the mechanical role of the two ubiquitous actin-crosslinking proteins, α-actinin and fascin, which co-localize to stress fibers and the basis of filopodia. Using live-cell particle tracking microrheology, we show that the addition of α-actinin and fascin elicits a cell mechanical response that is significantly greater than that originated by α-actinin or fascin alone. These live-cell measurements are supported by quantitative rheological measurements with reconstituted actin filament networks containing pure proteins that show that α-actinin and fascin can work in concert to generate enhanced cell stiffness. Computational simulations using finite element modeling qualitatively reproduce and explain the functional synergy of α-actinin and fascin. These findings highlight the cooperative activity of fascin and α-actinin and provide a strong rationale that an evolutionary advantage might be conferred by the cooperative action of multiple actin-crosslinking proteins with overlapping but non-identical biochemical properties. Thus the combination of structural proteins with similar function can provide the cell with unique properties that are required for biologically optimal responses. |
doi_str_mv | 10.1016/j.bbrc.2005.05.205 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68032318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X0501185X</els_id><sourcerecordid>68032318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-f644467960e8cba46dfe09522c900a078a2cc1832feba0de7f7b496e4f434f313</originalsourceid><addsrcrecordid>eNqFUcFq3DAQFaEh2W7yAyUUnXrzZiTLsgW5lKVtCoFcGshNyPJ4q41X2kjehvx95XihtwYGpGHeezO8R8gnBisGTF5vV20b7YoDVKtcHKoTsmCgoOAMxAeyAABZcMUez8nHlLYAjAmpzsg5q5Tidc0XZHMbXqixo_PUxpDS4PyT8xtqfEfbg--GqdnHMKLzidoQ9hjNiHQMdIN-_htP0f823mJHLQ4D3aHNrbNmoBHTPviEF-S0N0PCy-O7JA_fv_1a3xZ39z9-rr_eFVaAHIteCiFkrSRgY1sjZNcjqIpzqwAM1I3h1rKm5D22Bjqs-7oVSqLoRSn6kpVL8mXWzTc_HzCNeufSdJTxGA5JywZKXmaF94CsLoXilcxAPgPf_InY6310OxNfNQM95aC3espBTznoXDmHTPp8VD-0O-z-UY7GZ8DVDPAmGe3HmN74wFkjK5HHN_MYs1d_HEadrMPJYRfRjroL7n_r_wJfy6Le</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17349256</pqid></control><display><type>article</type><title>How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>NASA Technical Reports Server</source><creator>Tseng, Yiider ; Kole, Thomas P. ; Lee, Jerry S.H. ; Fedorov, Elena ; Almo, Steven C. ; Schafer, Benjamin W. ; Wirtz, Denis</creator><creatorcontrib>Tseng, Yiider ; Kole, Thomas P. ; Lee, Jerry S.H. ; Fedorov, Elena ; Almo, Steven C. ; Schafer, Benjamin W. ; Wirtz, Denis</creatorcontrib><description>Actin-crosslinking proteins organize actin filaments into dynamic and complex subcellular scaffolds that orchestrate important mechanical functions, including cell motility and adhesion. Recent mutation studies have shown that individual crosslinking proteins often play seemingly non-essential roles, leading to the hypothesis that they have considerable redundancy in function. We report live-cell, in vitro, and theoretical studies testing the mechanical role of the two ubiquitous actin-crosslinking proteins, α-actinin and fascin, which co-localize to stress fibers and the basis of filopodia. Using live-cell particle tracking microrheology, we show that the addition of α-actinin and fascin elicits a cell mechanical response that is significantly greater than that originated by α-actinin or fascin alone. These live-cell measurements are supported by quantitative rheological measurements with reconstituted actin filament networks containing pure proteins that show that α-actinin and fascin can work in concert to generate enhanced cell stiffness. Computational simulations using finite element modeling qualitatively reproduce and explain the functional synergy of α-actinin and fascin. These findings highlight the cooperative activity of fascin and α-actinin and provide a strong rationale that an evolutionary advantage might be conferred by the cooperative action of multiple actin-crosslinking proteins with overlapping but non-identical biochemical properties. Thus the combination of structural proteins with similar function can provide the cell with unique properties that are required for biologically optimal responses.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2005.05.205</identifier><identifier>PMID: 15992772</identifier><language>eng</language><publisher>Johnson Space Center: Elsevier Inc</publisher><subject>Actin ; Actins - chemistry ; Actins - physiology ; Actins - ultrastructure ; Animals ; Carrier Proteins - chemistry ; Carrier Proteins - physiology ; Carrier Proteins - ultrastructure ; Cell mechanics ; Cells, Cultured ; Cytoskeleton ; Cytoskeleton - chemistry ; Cytoskeleton - physiology ; Cytoskeleton - ultrastructure ; Elasticity ; Fascin ; Life Sciences (General) ; Mechanotransduction, Cellular - physiology ; Mice ; Microfilament Proteins - chemistry ; Microfilament Proteins - physiology ; Microfilament Proteins - ultrastructure ; Multiple-particle tracking microrheology ; Multiprotein Complexes - chemistry ; Multiprotein Complexes - physiology ; Multiprotein Complexes - ultrastructure ; Protein Binding ; Space life sciences ; Stress, Mechanical ; Swiss 3T3 Cells ; Viscosity ; α-Actinin</subject><ispartof>Biochemical and biophysical research communications, 2005-08, Vol.334 (1), p.183-192</ispartof><rights>2005 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-f644467960e8cba46dfe09522c900a078a2cc1832feba0de7f7b496e4f434f313</citedby><cites>FETCH-LOGICAL-c406t-f644467960e8cba46dfe09522c900a078a2cc1832feba0de7f7b496e4f434f313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbrc.2005.05.205$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15992772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tseng, Yiider</creatorcontrib><creatorcontrib>Kole, Thomas P.</creatorcontrib><creatorcontrib>Lee, Jerry S.H.</creatorcontrib><creatorcontrib>Fedorov, Elena</creatorcontrib><creatorcontrib>Almo, Steven C.</creatorcontrib><creatorcontrib>Schafer, Benjamin W.</creatorcontrib><creatorcontrib>Wirtz, Denis</creatorcontrib><title>How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>Actin-crosslinking proteins organize actin filaments into dynamic and complex subcellular scaffolds that orchestrate important mechanical functions, including cell motility and adhesion. Recent mutation studies have shown that individual crosslinking proteins often play seemingly non-essential roles, leading to the hypothesis that they have considerable redundancy in function. We report live-cell, in vitro, and theoretical studies testing the mechanical role of the two ubiquitous actin-crosslinking proteins, α-actinin and fascin, which co-localize to stress fibers and the basis of filopodia. Using live-cell particle tracking microrheology, we show that the addition of α-actinin and fascin elicits a cell mechanical response that is significantly greater than that originated by α-actinin or fascin alone. These live-cell measurements are supported by quantitative rheological measurements with reconstituted actin filament networks containing pure proteins that show that α-actinin and fascin can work in concert to generate enhanced cell stiffness. Computational simulations using finite element modeling qualitatively reproduce and explain the functional synergy of α-actinin and fascin. These findings highlight the cooperative activity of fascin and α-actinin and provide a strong rationale that an evolutionary advantage might be conferred by the cooperative action of multiple actin-crosslinking proteins with overlapping but non-identical biochemical properties. Thus the combination of structural proteins with similar function can provide the cell with unique properties that are required for biologically optimal responses.</description><subject>Actin</subject><subject>Actins - chemistry</subject><subject>Actins - physiology</subject><subject>Actins - ultrastructure</subject><subject>Animals</subject><subject>Carrier Proteins - chemistry</subject><subject>Carrier Proteins - physiology</subject><subject>Carrier Proteins - ultrastructure</subject><subject>Cell mechanics</subject><subject>Cells, Cultured</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - chemistry</subject><subject>Cytoskeleton - physiology</subject><subject>Cytoskeleton - ultrastructure</subject><subject>Elasticity</subject><subject>Fascin</subject><subject>Life Sciences (General)</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Mice</subject><subject>Microfilament Proteins - chemistry</subject><subject>Microfilament Proteins - physiology</subject><subject>Microfilament Proteins - ultrastructure</subject><subject>Multiple-particle tracking microrheology</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Multiprotein Complexes - physiology</subject><subject>Multiprotein Complexes - ultrastructure</subject><subject>Protein Binding</subject><subject>Space life sciences</subject><subject>Stress, Mechanical</subject><subject>Swiss 3T3 Cells</subject><subject>Viscosity</subject><subject>α-Actinin</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>EIF</sourceid><recordid>eNqFUcFq3DAQFaEh2W7yAyUUnXrzZiTLsgW5lKVtCoFcGshNyPJ4q41X2kjehvx95XihtwYGpGHeezO8R8gnBisGTF5vV20b7YoDVKtcHKoTsmCgoOAMxAeyAABZcMUez8nHlLYAjAmpzsg5q5Tidc0XZHMbXqixo_PUxpDS4PyT8xtqfEfbg--GqdnHMKLzidoQ9hjNiHQMdIN-_htP0f823mJHLQ4D3aHNrbNmoBHTPviEF-S0N0PCy-O7JA_fv_1a3xZ39z9-rr_eFVaAHIteCiFkrSRgY1sjZNcjqIpzqwAM1I3h1rKm5D22Bjqs-7oVSqLoRSn6kpVL8mXWzTc_HzCNeufSdJTxGA5JywZKXmaF94CsLoXilcxAPgPf_InY6310OxNfNQM95aC3espBTznoXDmHTPp8VD-0O-z-UY7GZ8DVDPAmGe3HmN74wFkjK5HHN_MYs1d_HEadrMPJYRfRjroL7n_r_wJfy6Le</recordid><startdate>20050819</startdate><enddate>20050819</enddate><creator>Tseng, Yiider</creator><creator>Kole, Thomas P.</creator><creator>Lee, Jerry S.H.</creator><creator>Fedorov, Elena</creator><creator>Almo, Steven C.</creator><creator>Schafer, Benjamin W.</creator><creator>Wirtz, Denis</creator><general>Elsevier Inc</general><scope>CYE</scope><scope>CYI</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20050819</creationdate><title>How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response</title><author>Tseng, Yiider ; Kole, Thomas P. ; Lee, Jerry S.H. ; Fedorov, Elena ; Almo, Steven C. ; Schafer, Benjamin W. ; Wirtz, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-f644467960e8cba46dfe09522c900a078a2cc1832feba0de7f7b496e4f434f313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Actin</topic><topic>Actins - chemistry</topic><topic>Actins - physiology</topic><topic>Actins - ultrastructure</topic><topic>Animals</topic><topic>Carrier Proteins - chemistry</topic><topic>Carrier Proteins - physiology</topic><topic>Carrier Proteins - ultrastructure</topic><topic>Cell mechanics</topic><topic>Cells, Cultured</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - chemistry</topic><topic>Cytoskeleton - physiology</topic><topic>Cytoskeleton - ultrastructure</topic><topic>Elasticity</topic><topic>Fascin</topic><topic>Life Sciences (General)</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Mice</topic><topic>Microfilament Proteins - chemistry</topic><topic>Microfilament Proteins - physiology</topic><topic>Microfilament Proteins - ultrastructure</topic><topic>Multiple-particle tracking microrheology</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Multiprotein Complexes - physiology</topic><topic>Multiprotein Complexes - ultrastructure</topic><topic>Protein Binding</topic><topic>Space life sciences</topic><topic>Stress, Mechanical</topic><topic>Swiss 3T3 Cells</topic><topic>Viscosity</topic><topic>α-Actinin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tseng, Yiider</creatorcontrib><creatorcontrib>Kole, Thomas P.</creatorcontrib><creatorcontrib>Lee, Jerry S.H.</creatorcontrib><creatorcontrib>Fedorov, Elena</creatorcontrib><creatorcontrib>Almo, Steven C.</creatorcontrib><creatorcontrib>Schafer, Benjamin W.</creatorcontrib><creatorcontrib>Wirtz, Denis</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tseng, Yiider</au><au>Kole, Thomas P.</au><au>Lee, Jerry S.H.</au><au>Fedorov, Elena</au><au>Almo, Steven C.</au><au>Schafer, Benjamin W.</au><au>Wirtz, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2005-08-19</date><risdate>2005</risdate><volume>334</volume><issue>1</issue><spage>183</spage><epage>192</epage><pages>183-192</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>Actin-crosslinking proteins organize actin filaments into dynamic and complex subcellular scaffolds that orchestrate important mechanical functions, including cell motility and adhesion. Recent mutation studies have shown that individual crosslinking proteins often play seemingly non-essential roles, leading to the hypothesis that they have considerable redundancy in function. We report live-cell, in vitro, and theoretical studies testing the mechanical role of the two ubiquitous actin-crosslinking proteins, α-actinin and fascin, which co-localize to stress fibers and the basis of filopodia. Using live-cell particle tracking microrheology, we show that the addition of α-actinin and fascin elicits a cell mechanical response that is significantly greater than that originated by α-actinin or fascin alone. These live-cell measurements are supported by quantitative rheological measurements with reconstituted actin filament networks containing pure proteins that show that α-actinin and fascin can work in concert to generate enhanced cell stiffness. Computational simulations using finite element modeling qualitatively reproduce and explain the functional synergy of α-actinin and fascin. These findings highlight the cooperative activity of fascin and α-actinin and provide a strong rationale that an evolutionary advantage might be conferred by the cooperative action of multiple actin-crosslinking proteins with overlapping but non-identical biochemical properties. Thus the combination of structural proteins with similar function can provide the cell with unique properties that are required for biologically optimal responses.</abstract><cop>Johnson Space Center</cop><pub>Elsevier Inc</pub><pmid>15992772</pmid><doi>10.1016/j.bbrc.2005.05.205</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-291X |
ispartof | Biochemical and biophysical research communications, 2005-08, Vol.334 (1), p.183-192 |
issn | 0006-291X 1090-2104 |
language | eng |
recordid | cdi_proquest_miscellaneous_68032318 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; NASA Technical Reports Server |
subjects | Actin Actins - chemistry Actins - physiology Actins - ultrastructure Animals Carrier Proteins - chemistry Carrier Proteins - physiology Carrier Proteins - ultrastructure Cell mechanics Cells, Cultured Cytoskeleton Cytoskeleton - chemistry Cytoskeleton - physiology Cytoskeleton - ultrastructure Elasticity Fascin Life Sciences (General) Mechanotransduction, Cellular - physiology Mice Microfilament Proteins - chemistry Microfilament Proteins - physiology Microfilament Proteins - ultrastructure Multiple-particle tracking microrheology Multiprotein Complexes - chemistry Multiprotein Complexes - physiology Multiprotein Complexes - ultrastructure Protein Binding Space life sciences Stress, Mechanical Swiss 3T3 Cells Viscosity α-Actinin |
title | How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20actin%20crosslinking%20and%20bundling%20proteins%20cooperate%20to%20generate%20an%20enhanced%20cell%20mechanical%20response&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Tseng,%20Yiider&rft.date=2005-08-19&rft.volume=334&rft.issue=1&rft.spage=183&rft.epage=192&rft.pages=183-192&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2005.05.205&rft_dat=%3Cproquest_cross%3E68032318%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17349256&rft_id=info:pmid/15992772&rft_els_id=S0006291X0501185X&rfr_iscdi=true |