How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response

Actin-crosslinking proteins organize actin filaments into dynamic and complex subcellular scaffolds that orchestrate important mechanical functions, including cell motility and adhesion. Recent mutation studies have shown that individual crosslinking proteins often play seemingly non-essential roles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2005-08, Vol.334 (1), p.183-192
Hauptverfasser: Tseng, Yiider, Kole, Thomas P., Lee, Jerry S.H., Fedorov, Elena, Almo, Steven C., Schafer, Benjamin W., Wirtz, Denis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 1
container_start_page 183
container_title Biochemical and biophysical research communications
container_volume 334
creator Tseng, Yiider
Kole, Thomas P.
Lee, Jerry S.H.
Fedorov, Elena
Almo, Steven C.
Schafer, Benjamin W.
Wirtz, Denis
description Actin-crosslinking proteins organize actin filaments into dynamic and complex subcellular scaffolds that orchestrate important mechanical functions, including cell motility and adhesion. Recent mutation studies have shown that individual crosslinking proteins often play seemingly non-essential roles, leading to the hypothesis that they have considerable redundancy in function. We report live-cell, in vitro, and theoretical studies testing the mechanical role of the two ubiquitous actin-crosslinking proteins, α-actinin and fascin, which co-localize to stress fibers and the basis of filopodia. Using live-cell particle tracking microrheology, we show that the addition of α-actinin and fascin elicits a cell mechanical response that is significantly greater than that originated by α-actinin or fascin alone. These live-cell measurements are supported by quantitative rheological measurements with reconstituted actin filament networks containing pure proteins that show that α-actinin and fascin can work in concert to generate enhanced cell stiffness. Computational simulations using finite element modeling qualitatively reproduce and explain the functional synergy of α-actinin and fascin. These findings highlight the cooperative activity of fascin and α-actinin and provide a strong rationale that an evolutionary advantage might be conferred by the cooperative action of multiple actin-crosslinking proteins with overlapping but non-identical biochemical properties. Thus the combination of structural proteins with similar function can provide the cell with unique properties that are required for biologically optimal responses.
doi_str_mv 10.1016/j.bbrc.2005.05.205
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68032318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X0501185X</els_id><sourcerecordid>68032318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-f644467960e8cba46dfe09522c900a078a2cc1832feba0de7f7b496e4f434f313</originalsourceid><addsrcrecordid>eNqFUcFq3DAQFaEh2W7yAyUUnXrzZiTLsgW5lKVtCoFcGshNyPJ4q41X2kjehvx95XihtwYGpGHeezO8R8gnBisGTF5vV20b7YoDVKtcHKoTsmCgoOAMxAeyAABZcMUez8nHlLYAjAmpzsg5q5Tidc0XZHMbXqixo_PUxpDS4PyT8xtqfEfbg--GqdnHMKLzidoQ9hjNiHQMdIN-_htP0f823mJHLQ4D3aHNrbNmoBHTPviEF-S0N0PCy-O7JA_fv_1a3xZ39z9-rr_eFVaAHIteCiFkrSRgY1sjZNcjqIpzqwAM1I3h1rKm5D22Bjqs-7oVSqLoRSn6kpVL8mXWzTc_HzCNeufSdJTxGA5JywZKXmaF94CsLoXilcxAPgPf_InY6310OxNfNQM95aC3espBTznoXDmHTPp8VD-0O-z-UY7GZ8DVDPAmGe3HmN74wFkjK5HHN_MYs1d_HEadrMPJYRfRjroL7n_r_wJfy6Le</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17349256</pqid></control><display><type>article</type><title>How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>NASA Technical Reports Server</source><creator>Tseng, Yiider ; Kole, Thomas P. ; Lee, Jerry S.H. ; Fedorov, Elena ; Almo, Steven C. ; Schafer, Benjamin W. ; Wirtz, Denis</creator><creatorcontrib>Tseng, Yiider ; Kole, Thomas P. ; Lee, Jerry S.H. ; Fedorov, Elena ; Almo, Steven C. ; Schafer, Benjamin W. ; Wirtz, Denis</creatorcontrib><description>Actin-crosslinking proteins organize actin filaments into dynamic and complex subcellular scaffolds that orchestrate important mechanical functions, including cell motility and adhesion. Recent mutation studies have shown that individual crosslinking proteins often play seemingly non-essential roles, leading to the hypothesis that they have considerable redundancy in function. We report live-cell, in vitro, and theoretical studies testing the mechanical role of the two ubiquitous actin-crosslinking proteins, α-actinin and fascin, which co-localize to stress fibers and the basis of filopodia. Using live-cell particle tracking microrheology, we show that the addition of α-actinin and fascin elicits a cell mechanical response that is significantly greater than that originated by α-actinin or fascin alone. These live-cell measurements are supported by quantitative rheological measurements with reconstituted actin filament networks containing pure proteins that show that α-actinin and fascin can work in concert to generate enhanced cell stiffness. Computational simulations using finite element modeling qualitatively reproduce and explain the functional synergy of α-actinin and fascin. These findings highlight the cooperative activity of fascin and α-actinin and provide a strong rationale that an evolutionary advantage might be conferred by the cooperative action of multiple actin-crosslinking proteins with overlapping but non-identical biochemical properties. Thus the combination of structural proteins with similar function can provide the cell with unique properties that are required for biologically optimal responses.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2005.05.205</identifier><identifier>PMID: 15992772</identifier><language>eng</language><publisher>Johnson Space Center: Elsevier Inc</publisher><subject>Actin ; Actins - chemistry ; Actins - physiology ; Actins - ultrastructure ; Animals ; Carrier Proteins - chemistry ; Carrier Proteins - physiology ; Carrier Proteins - ultrastructure ; Cell mechanics ; Cells, Cultured ; Cytoskeleton ; Cytoskeleton - chemistry ; Cytoskeleton - physiology ; Cytoskeleton - ultrastructure ; Elasticity ; Fascin ; Life Sciences (General) ; Mechanotransduction, Cellular - physiology ; Mice ; Microfilament Proteins - chemistry ; Microfilament Proteins - physiology ; Microfilament Proteins - ultrastructure ; Multiple-particle tracking microrheology ; Multiprotein Complexes - chemistry ; Multiprotein Complexes - physiology ; Multiprotein Complexes - ultrastructure ; Protein Binding ; Space life sciences ; Stress, Mechanical ; Swiss 3T3 Cells ; Viscosity ; α-Actinin</subject><ispartof>Biochemical and biophysical research communications, 2005-08, Vol.334 (1), p.183-192</ispartof><rights>2005 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-f644467960e8cba46dfe09522c900a078a2cc1832feba0de7f7b496e4f434f313</citedby><cites>FETCH-LOGICAL-c406t-f644467960e8cba46dfe09522c900a078a2cc1832feba0de7f7b496e4f434f313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbrc.2005.05.205$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15992772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tseng, Yiider</creatorcontrib><creatorcontrib>Kole, Thomas P.</creatorcontrib><creatorcontrib>Lee, Jerry S.H.</creatorcontrib><creatorcontrib>Fedorov, Elena</creatorcontrib><creatorcontrib>Almo, Steven C.</creatorcontrib><creatorcontrib>Schafer, Benjamin W.</creatorcontrib><creatorcontrib>Wirtz, Denis</creatorcontrib><title>How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>Actin-crosslinking proteins organize actin filaments into dynamic and complex subcellular scaffolds that orchestrate important mechanical functions, including cell motility and adhesion. Recent mutation studies have shown that individual crosslinking proteins often play seemingly non-essential roles, leading to the hypothesis that they have considerable redundancy in function. We report live-cell, in vitro, and theoretical studies testing the mechanical role of the two ubiquitous actin-crosslinking proteins, α-actinin and fascin, which co-localize to stress fibers and the basis of filopodia. Using live-cell particle tracking microrheology, we show that the addition of α-actinin and fascin elicits a cell mechanical response that is significantly greater than that originated by α-actinin or fascin alone. These live-cell measurements are supported by quantitative rheological measurements with reconstituted actin filament networks containing pure proteins that show that α-actinin and fascin can work in concert to generate enhanced cell stiffness. Computational simulations using finite element modeling qualitatively reproduce and explain the functional synergy of α-actinin and fascin. These findings highlight the cooperative activity of fascin and α-actinin and provide a strong rationale that an evolutionary advantage might be conferred by the cooperative action of multiple actin-crosslinking proteins with overlapping but non-identical biochemical properties. Thus the combination of structural proteins with similar function can provide the cell with unique properties that are required for biologically optimal responses.</description><subject>Actin</subject><subject>Actins - chemistry</subject><subject>Actins - physiology</subject><subject>Actins - ultrastructure</subject><subject>Animals</subject><subject>Carrier Proteins - chemistry</subject><subject>Carrier Proteins - physiology</subject><subject>Carrier Proteins - ultrastructure</subject><subject>Cell mechanics</subject><subject>Cells, Cultured</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - chemistry</subject><subject>Cytoskeleton - physiology</subject><subject>Cytoskeleton - ultrastructure</subject><subject>Elasticity</subject><subject>Fascin</subject><subject>Life Sciences (General)</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Mice</subject><subject>Microfilament Proteins - chemistry</subject><subject>Microfilament Proteins - physiology</subject><subject>Microfilament Proteins - ultrastructure</subject><subject>Multiple-particle tracking microrheology</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Multiprotein Complexes - physiology</subject><subject>Multiprotein Complexes - ultrastructure</subject><subject>Protein Binding</subject><subject>Space life sciences</subject><subject>Stress, Mechanical</subject><subject>Swiss 3T3 Cells</subject><subject>Viscosity</subject><subject>α-Actinin</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>EIF</sourceid><recordid>eNqFUcFq3DAQFaEh2W7yAyUUnXrzZiTLsgW5lKVtCoFcGshNyPJ4q41X2kjehvx95XihtwYGpGHeezO8R8gnBisGTF5vV20b7YoDVKtcHKoTsmCgoOAMxAeyAABZcMUez8nHlLYAjAmpzsg5q5Tidc0XZHMbXqixo_PUxpDS4PyT8xtqfEfbg--GqdnHMKLzidoQ9hjNiHQMdIN-_htP0f823mJHLQ4D3aHNrbNmoBHTPviEF-S0N0PCy-O7JA_fv_1a3xZ39z9-rr_eFVaAHIteCiFkrSRgY1sjZNcjqIpzqwAM1I3h1rKm5D22Bjqs-7oVSqLoRSn6kpVL8mXWzTc_HzCNeufSdJTxGA5JywZKXmaF94CsLoXilcxAPgPf_InY6310OxNfNQM95aC3espBTznoXDmHTPp8VD-0O-z-UY7GZ8DVDPAmGe3HmN74wFkjK5HHN_MYs1d_HEadrMPJYRfRjroL7n_r_wJfy6Le</recordid><startdate>20050819</startdate><enddate>20050819</enddate><creator>Tseng, Yiider</creator><creator>Kole, Thomas P.</creator><creator>Lee, Jerry S.H.</creator><creator>Fedorov, Elena</creator><creator>Almo, Steven C.</creator><creator>Schafer, Benjamin W.</creator><creator>Wirtz, Denis</creator><general>Elsevier Inc</general><scope>CYE</scope><scope>CYI</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20050819</creationdate><title>How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response</title><author>Tseng, Yiider ; Kole, Thomas P. ; Lee, Jerry S.H. ; Fedorov, Elena ; Almo, Steven C. ; Schafer, Benjamin W. ; Wirtz, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-f644467960e8cba46dfe09522c900a078a2cc1832feba0de7f7b496e4f434f313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Actin</topic><topic>Actins - chemistry</topic><topic>Actins - physiology</topic><topic>Actins - ultrastructure</topic><topic>Animals</topic><topic>Carrier Proteins - chemistry</topic><topic>Carrier Proteins - physiology</topic><topic>Carrier Proteins - ultrastructure</topic><topic>Cell mechanics</topic><topic>Cells, Cultured</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - chemistry</topic><topic>Cytoskeleton - physiology</topic><topic>Cytoskeleton - ultrastructure</topic><topic>Elasticity</topic><topic>Fascin</topic><topic>Life Sciences (General)</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Mice</topic><topic>Microfilament Proteins - chemistry</topic><topic>Microfilament Proteins - physiology</topic><topic>Microfilament Proteins - ultrastructure</topic><topic>Multiple-particle tracking microrheology</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Multiprotein Complexes - physiology</topic><topic>Multiprotein Complexes - ultrastructure</topic><topic>Protein Binding</topic><topic>Space life sciences</topic><topic>Stress, Mechanical</topic><topic>Swiss 3T3 Cells</topic><topic>Viscosity</topic><topic>α-Actinin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tseng, Yiider</creatorcontrib><creatorcontrib>Kole, Thomas P.</creatorcontrib><creatorcontrib>Lee, Jerry S.H.</creatorcontrib><creatorcontrib>Fedorov, Elena</creatorcontrib><creatorcontrib>Almo, Steven C.</creatorcontrib><creatorcontrib>Schafer, Benjamin W.</creatorcontrib><creatorcontrib>Wirtz, Denis</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tseng, Yiider</au><au>Kole, Thomas P.</au><au>Lee, Jerry S.H.</au><au>Fedorov, Elena</au><au>Almo, Steven C.</au><au>Schafer, Benjamin W.</au><au>Wirtz, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2005-08-19</date><risdate>2005</risdate><volume>334</volume><issue>1</issue><spage>183</spage><epage>192</epage><pages>183-192</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>Actin-crosslinking proteins organize actin filaments into dynamic and complex subcellular scaffolds that orchestrate important mechanical functions, including cell motility and adhesion. Recent mutation studies have shown that individual crosslinking proteins often play seemingly non-essential roles, leading to the hypothesis that they have considerable redundancy in function. We report live-cell, in vitro, and theoretical studies testing the mechanical role of the two ubiquitous actin-crosslinking proteins, α-actinin and fascin, which co-localize to stress fibers and the basis of filopodia. Using live-cell particle tracking microrheology, we show that the addition of α-actinin and fascin elicits a cell mechanical response that is significantly greater than that originated by α-actinin or fascin alone. These live-cell measurements are supported by quantitative rheological measurements with reconstituted actin filament networks containing pure proteins that show that α-actinin and fascin can work in concert to generate enhanced cell stiffness. Computational simulations using finite element modeling qualitatively reproduce and explain the functional synergy of α-actinin and fascin. These findings highlight the cooperative activity of fascin and α-actinin and provide a strong rationale that an evolutionary advantage might be conferred by the cooperative action of multiple actin-crosslinking proteins with overlapping but non-identical biochemical properties. Thus the combination of structural proteins with similar function can provide the cell with unique properties that are required for biologically optimal responses.</abstract><cop>Johnson Space Center</cop><pub>Elsevier Inc</pub><pmid>15992772</pmid><doi>10.1016/j.bbrc.2005.05.205</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-291X
ispartof Biochemical and biophysical research communications, 2005-08, Vol.334 (1), p.183-192
issn 0006-291X
1090-2104
language eng
recordid cdi_proquest_miscellaneous_68032318
source MEDLINE; Elsevier ScienceDirect Journals Complete; NASA Technical Reports Server
subjects Actin
Actins - chemistry
Actins - physiology
Actins - ultrastructure
Animals
Carrier Proteins - chemistry
Carrier Proteins - physiology
Carrier Proteins - ultrastructure
Cell mechanics
Cells, Cultured
Cytoskeleton
Cytoskeleton - chemistry
Cytoskeleton - physiology
Cytoskeleton - ultrastructure
Elasticity
Fascin
Life Sciences (General)
Mechanotransduction, Cellular - physiology
Mice
Microfilament Proteins - chemistry
Microfilament Proteins - physiology
Microfilament Proteins - ultrastructure
Multiple-particle tracking microrheology
Multiprotein Complexes - chemistry
Multiprotein Complexes - physiology
Multiprotein Complexes - ultrastructure
Protein Binding
Space life sciences
Stress, Mechanical
Swiss 3T3 Cells
Viscosity
α-Actinin
title How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20actin%20crosslinking%20and%20bundling%20proteins%20cooperate%20to%20generate%20an%20enhanced%20cell%20mechanical%20response&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Tseng,%20Yiider&rft.date=2005-08-19&rft.volume=334&rft.issue=1&rft.spage=183&rft.epage=192&rft.pages=183-192&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2005.05.205&rft_dat=%3Cproquest_cross%3E68032318%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17349256&rft_id=info:pmid/15992772&rft_els_id=S0006291X0501185X&rfr_iscdi=true