Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy
A method was developed to quantify prostate metabolite concentrations using 1H high‐resolution magic angle spinning (HR‐MAS) spectroscopy. T1 and T2 relaxation times (in milliseconds) were determined for the major prostate metabolites and an internal TSP standard, and used to optimize the acquisitio...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2006-06, Vol.55 (6), p.1257-1264 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1264 |
---|---|
container_issue | 6 |
container_start_page | 1257 |
container_title | Magnetic resonance in medicine |
container_volume | 55 |
creator | Swanson, Mark G. Zektzer, Andrew S. Tabatabai, Z. Laura Simko, Jeffry Jarso, Samson Keshari, Kayvan R. Schmitt, Lars Carroll, Peter R. Shinohara, Katsuto Vigneron, Daniel B. Kurhanewicz, John |
description | A method was developed to quantify prostate metabolite concentrations using 1H high‐resolution magic angle spinning (HR‐MAS) spectroscopy. T1 and T2 relaxation times (in milliseconds) were determined for the major prostate metabolites and an internal TSP standard, and used to optimize the acquisition and repetition times (TRs) at 11.7 T. At 1°C, polyamines (PAs; T1mean = 100 ± 13, T2mean = 30.8 ± 7.4) and citrate (Cit; T1mean = 237 ± 39, T2mean = 68.1 ± 8.2) demonstrated the shortest relaxation times, while taurine (Tau; T1mean = 636 ± 78, T2mean = 331 ± 71) and choline (Cho; T1mean = 608 ± 60, T2mean = 393 ± 81) demonstrated the longest relaxation times. Millimolal metabolite concentrations were calculated for 60 postsurgical tissues using metabolite and TSP peak areas, and the mass of tissue and TSP. Phosphocholine plus glycerophosphocholine (PC+GPC), total choline (tCho), lactate (Lac), and alanine (Ala) concentrations were higher in prostate cancer ([PC+GPC]mean = 9.34 ± 6.43, [tCho]mean = 13.8 ± 7.4, [Lac]mean = 69.8 ± 27.1, [Ala]mean = 12.6 ± 6.8) than in healthy glandular ([PC+GPC]mean = 3.55 ± 1.53, P < 0.01; [tCho]mean = 7.06 ± 2.36, P < 0.01; [Lac]mean = 46.5 ± 17.4, P < 0.01; [Ala]mean = 8.63 ± 4.91, P = 0.051) and healthy stromal tissues ([PC+GPC]mean = 4.34 ± 2.46, P < 0.01; [tCho]mean = 7.04 ± 3.10, P < 0.01; [Lac]mean = 45.1 ± 18.6, P < 0.01; [Ala]mean = 6.80 ± 2.95, P < 0.01), while Cit and PA concentrations were significantly higher in healthy glandular tissues ([Cit]mean = 43.1 ± 21.2, [PAs]mean = 18.5 ± 15.6) than in healthy stromal ([Cit]mean = 16.1 ± 5.6, P < 0.01; [PAs]mean = 3.15 ± 1.81, P < 0.01) and prostate cancer tissues ([Cit]mean = 19.6 ± 12.7, P < 0.01; [PAs]mean = 5.28 ± 5.44, P < 0.01). Serial spectra acquired over 12 hr indicated that the degradation of Cho‐containing metabolites was minimized by acquiring HR‐MAS data at 1°C compared to 20°C. Magn Reson Med, 2006. © 2006 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/mrm.20909 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_68016887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68016887</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1639-aa7baf2bfd6f7121aee142c19bf7b858f181402c2ff9b3e035f75d983fd877273</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEgjE48AdQT9y62UnbJMcxwcbY-EYco7RLUKBdR9MC-_cUxseRky37eS3rIeQAoYcAtF9URY-CBLlBOhhTGtJYRpukAzyCkKGMdsiu908AICWPtskOJomIOWMdMrlu9KJ2ta7dqwn0Qucr73xQ2mBZlb4dm6AwtU7L3NXGB413i8cAx8H4JpwNbgO_NFndglm5XO2RLatzb_a_a5fcn57cDcfh9HJ0NhxMQ4cJk6HWPNWWpnaeWI4UtTEY0QxlankqYmFRYAQ0o9bKlBlgseXxXApm54JzylmXHK3vth--NMbXqnA-M3muF6ZsvEoEYCLE_yAFEVOEpAUPv8EmLcxcLStX6GqlfjS1QH8NvLncrP72oD79q9a_-vKvZjezr6ZNhOuE87V5_03o6lklnPFYPVyM1Oj46nyCEhWwD3cmhls</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20852106</pqid></control><display><type>article</type><title>Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy</title><source>MEDLINE</source><source>Wiley Journals</source><source>Wiley Free Content</source><creator>Swanson, Mark G. ; Zektzer, Andrew S. ; Tabatabai, Z. Laura ; Simko, Jeffry ; Jarso, Samson ; Keshari, Kayvan R. ; Schmitt, Lars ; Carroll, Peter R. ; Shinohara, Katsuto ; Vigneron, Daniel B. ; Kurhanewicz, John</creator><creatorcontrib>Swanson, Mark G. ; Zektzer, Andrew S. ; Tabatabai, Z. Laura ; Simko, Jeffry ; Jarso, Samson ; Keshari, Kayvan R. ; Schmitt, Lars ; Carroll, Peter R. ; Shinohara, Katsuto ; Vigneron, Daniel B. ; Kurhanewicz, John</creatorcontrib><description><![CDATA[A method was developed to quantify prostate metabolite concentrations using 1H high‐resolution magic angle spinning (HR‐MAS) spectroscopy. T1 and T2 relaxation times (in milliseconds) were determined for the major prostate metabolites and an internal TSP standard, and used to optimize the acquisition and repetition times (TRs) at 11.7 T. At 1°C, polyamines (PAs; T1mean = 100 ± 13, T2mean = 30.8 ± 7.4) and citrate (Cit; T1mean = 237 ± 39, T2mean = 68.1 ± 8.2) demonstrated the shortest relaxation times, while taurine (Tau; T1mean = 636 ± 78, T2mean = 331 ± 71) and choline (Cho; T1mean = 608 ± 60, T2mean = 393 ± 81) demonstrated the longest relaxation times. Millimolal metabolite concentrations were calculated for 60 postsurgical tissues using metabolite and TSP peak areas, and the mass of tissue and TSP. Phosphocholine plus glycerophosphocholine (PC+GPC), total choline (tCho), lactate (Lac), and alanine (Ala) concentrations were higher in prostate cancer ([PC+GPC]mean = 9.34 ± 6.43, [tCho]mean = 13.8 ± 7.4, [Lac]mean = 69.8 ± 27.1, [Ala]mean = 12.6 ± 6.8) than in healthy glandular ([PC+GPC]mean = 3.55 ± 1.53, P < 0.01; [tCho]mean = 7.06 ± 2.36, P < 0.01; [Lac]mean = 46.5 ± 17.4, P < 0.01; [Ala]mean = 8.63 ± 4.91, P = 0.051) and healthy stromal tissues ([PC+GPC]mean = 4.34 ± 2.46, P < 0.01; [tCho]mean = 7.04 ± 3.10, P < 0.01; [Lac]mean = 45.1 ± 18.6, P < 0.01; [Ala]mean = 6.80 ± 2.95, P < 0.01), while Cit and PA concentrations were significantly higher in healthy glandular tissues ([Cit]mean = 43.1 ± 21.2, [PAs]mean = 18.5 ± 15.6) than in healthy stromal ([Cit]mean = 16.1 ± 5.6, P < 0.01; [PAs]mean = 3.15 ± 1.81, P < 0.01) and prostate cancer tissues ([Cit]mean = 19.6 ± 12.7, P < 0.01; [PAs]mean = 5.28 ± 5.44, P < 0.01). Serial spectra acquired over 12 hr indicated that the degradation of Cho‐containing metabolites was minimized by acquiring HR‐MAS data at 1°C compared to 20°C. Magn Reson Med, 2006. © 2006 Wiley‐Liss, Inc.]]></description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.20909</identifier><identifier>PMID: 16685733</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algorithms ; Biomarkers, Tumor - analysis ; Biomarkers, Tumor - metabolism ; concentration ; degradation ; Diagnosis, Computer-Assisted - methods ; Humans ; Lorentzian-Gaussian peak fitting ; Magnetic Resonance Spectroscopy - methods ; Male ; Prostate - metabolism ; Prostatic Neoplasms - diagnosis ; Prostatic Neoplasms - metabolism ; Protons ; relaxation times ; Reproducibility of Results ; rotors ; Sensitivity and Specificity ; Spin Labels ; Tumor Cells, Cultured</subject><ispartof>Magnetic resonance in medicine, 2006-06, Vol.55 (6), p.1257-1264</ispartof><rights>Copyright © 2006 Wiley‐Liss, Inc.</rights><rights>Copyright 2006 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.20909$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.20909$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16685733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Swanson, Mark G.</creatorcontrib><creatorcontrib>Zektzer, Andrew S.</creatorcontrib><creatorcontrib>Tabatabai, Z. Laura</creatorcontrib><creatorcontrib>Simko, Jeffry</creatorcontrib><creatorcontrib>Jarso, Samson</creatorcontrib><creatorcontrib>Keshari, Kayvan R.</creatorcontrib><creatorcontrib>Schmitt, Lars</creatorcontrib><creatorcontrib>Carroll, Peter R.</creatorcontrib><creatorcontrib>Shinohara, Katsuto</creatorcontrib><creatorcontrib>Vigneron, Daniel B.</creatorcontrib><creatorcontrib>Kurhanewicz, John</creatorcontrib><title>Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description><![CDATA[A method was developed to quantify prostate metabolite concentrations using 1H high‐resolution magic angle spinning (HR‐MAS) spectroscopy. T1 and T2 relaxation times (in milliseconds) were determined for the major prostate metabolites and an internal TSP standard, and used to optimize the acquisition and repetition times (TRs) at 11.7 T. At 1°C, polyamines (PAs; T1mean = 100 ± 13, T2mean = 30.8 ± 7.4) and citrate (Cit; T1mean = 237 ± 39, T2mean = 68.1 ± 8.2) demonstrated the shortest relaxation times, while taurine (Tau; T1mean = 636 ± 78, T2mean = 331 ± 71) and choline (Cho; T1mean = 608 ± 60, T2mean = 393 ± 81) demonstrated the longest relaxation times. Millimolal metabolite concentrations were calculated for 60 postsurgical tissues using metabolite and TSP peak areas, and the mass of tissue and TSP. Phosphocholine plus glycerophosphocholine (PC+GPC), total choline (tCho), lactate (Lac), and alanine (Ala) concentrations were higher in prostate cancer ([PC+GPC]mean = 9.34 ± 6.43, [tCho]mean = 13.8 ± 7.4, [Lac]mean = 69.8 ± 27.1, [Ala]mean = 12.6 ± 6.8) than in healthy glandular ([PC+GPC]mean = 3.55 ± 1.53, P < 0.01; [tCho]mean = 7.06 ± 2.36, P < 0.01; [Lac]mean = 46.5 ± 17.4, P < 0.01; [Ala]mean = 8.63 ± 4.91, P = 0.051) and healthy stromal tissues ([PC+GPC]mean = 4.34 ± 2.46, P < 0.01; [tCho]mean = 7.04 ± 3.10, P < 0.01; [Lac]mean = 45.1 ± 18.6, P < 0.01; [Ala]mean = 6.80 ± 2.95, P < 0.01), while Cit and PA concentrations were significantly higher in healthy glandular tissues ([Cit]mean = 43.1 ± 21.2, [PAs]mean = 18.5 ± 15.6) than in healthy stromal ([Cit]mean = 16.1 ± 5.6, P < 0.01; [PAs]mean = 3.15 ± 1.81, P < 0.01) and prostate cancer tissues ([Cit]mean = 19.6 ± 12.7, P < 0.01; [PAs]mean = 5.28 ± 5.44, P < 0.01). Serial spectra acquired over 12 hr indicated that the degradation of Cho‐containing metabolites was minimized by acquiring HR‐MAS data at 1°C compared to 20°C. Magn Reson Med, 2006. © 2006 Wiley‐Liss, Inc.]]></description><subject>Algorithms</subject><subject>Biomarkers, Tumor - analysis</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>concentration</subject><subject>degradation</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Humans</subject><subject>Lorentzian-Gaussian peak fitting</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Male</subject><subject>Prostate - metabolism</subject><subject>Prostatic Neoplasms - diagnosis</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>Protons</subject><subject>relaxation times</subject><subject>Reproducibility of Results</subject><subject>rotors</subject><subject>Sensitivity and Specificity</subject><subject>Spin Labels</subject><subject>Tumor Cells, Cultured</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1PwzAMhiMEgjE48AdQT9y62UnbJMcxwcbY-EYco7RLUKBdR9MC-_cUxseRky37eS3rIeQAoYcAtF9URY-CBLlBOhhTGtJYRpukAzyCkKGMdsiu908AICWPtskOJomIOWMdMrlu9KJ2ta7dqwn0Qucr73xQ2mBZlb4dm6AwtU7L3NXGB413i8cAx8H4JpwNbgO_NFndglm5XO2RLatzb_a_a5fcn57cDcfh9HJ0NhxMQ4cJk6HWPNWWpnaeWI4UtTEY0QxlankqYmFRYAQ0o9bKlBlgseXxXApm54JzylmXHK3vth--NMbXqnA-M3muF6ZsvEoEYCLE_yAFEVOEpAUPv8EmLcxcLStX6GqlfjS1QH8NvLncrP72oD79q9a_-vKvZjezr6ZNhOuE87V5_03o6lklnPFYPVyM1Oj46nyCEhWwD3cmhls</recordid><startdate>200606</startdate><enddate>200606</enddate><creator>Swanson, Mark G.</creator><creator>Zektzer, Andrew S.</creator><creator>Tabatabai, Z. Laura</creator><creator>Simko, Jeffry</creator><creator>Jarso, Samson</creator><creator>Keshari, Kayvan R.</creator><creator>Schmitt, Lars</creator><creator>Carroll, Peter R.</creator><creator>Shinohara, Katsuto</creator><creator>Vigneron, Daniel B.</creator><creator>Kurhanewicz, John</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200606</creationdate><title>Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy</title><author>Swanson, Mark G. ; Zektzer, Andrew S. ; Tabatabai, Z. Laura ; Simko, Jeffry ; Jarso, Samson ; Keshari, Kayvan R. ; Schmitt, Lars ; Carroll, Peter R. ; Shinohara, Katsuto ; Vigneron, Daniel B. ; Kurhanewicz, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1639-aa7baf2bfd6f7121aee142c19bf7b858f181402c2ff9b3e035f75d983fd877273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Biomarkers, Tumor - analysis</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>concentration</topic><topic>degradation</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Humans</topic><topic>Lorentzian-Gaussian peak fitting</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Male</topic><topic>Prostate - metabolism</topic><topic>Prostatic Neoplasms - diagnosis</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>Protons</topic><topic>relaxation times</topic><topic>Reproducibility of Results</topic><topic>rotors</topic><topic>Sensitivity and Specificity</topic><topic>Spin Labels</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swanson, Mark G.</creatorcontrib><creatorcontrib>Zektzer, Andrew S.</creatorcontrib><creatorcontrib>Tabatabai, Z. Laura</creatorcontrib><creatorcontrib>Simko, Jeffry</creatorcontrib><creatorcontrib>Jarso, Samson</creatorcontrib><creatorcontrib>Keshari, Kayvan R.</creatorcontrib><creatorcontrib>Schmitt, Lars</creatorcontrib><creatorcontrib>Carroll, Peter R.</creatorcontrib><creatorcontrib>Shinohara, Katsuto</creatorcontrib><creatorcontrib>Vigneron, Daniel B.</creatorcontrib><creatorcontrib>Kurhanewicz, John</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swanson, Mark G.</au><au>Zektzer, Andrew S.</au><au>Tabatabai, Z. Laura</au><au>Simko, Jeffry</au><au>Jarso, Samson</au><au>Keshari, Kayvan R.</au><au>Schmitt, Lars</au><au>Carroll, Peter R.</au><au>Shinohara, Katsuto</au><au>Vigneron, Daniel B.</au><au>Kurhanewicz, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2006-06</date><risdate>2006</risdate><volume>55</volume><issue>6</issue><spage>1257</spage><epage>1264</epage><pages>1257-1264</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract><![CDATA[A method was developed to quantify prostate metabolite concentrations using 1H high‐resolution magic angle spinning (HR‐MAS) spectroscopy. T1 and T2 relaxation times (in milliseconds) were determined for the major prostate metabolites and an internal TSP standard, and used to optimize the acquisition and repetition times (TRs) at 11.7 T. At 1°C, polyamines (PAs; T1mean = 100 ± 13, T2mean = 30.8 ± 7.4) and citrate (Cit; T1mean = 237 ± 39, T2mean = 68.1 ± 8.2) demonstrated the shortest relaxation times, while taurine (Tau; T1mean = 636 ± 78, T2mean = 331 ± 71) and choline (Cho; T1mean = 608 ± 60, T2mean = 393 ± 81) demonstrated the longest relaxation times. Millimolal metabolite concentrations were calculated for 60 postsurgical tissues using metabolite and TSP peak areas, and the mass of tissue and TSP. Phosphocholine plus glycerophosphocholine (PC+GPC), total choline (tCho), lactate (Lac), and alanine (Ala) concentrations were higher in prostate cancer ([PC+GPC]mean = 9.34 ± 6.43, [tCho]mean = 13.8 ± 7.4, [Lac]mean = 69.8 ± 27.1, [Ala]mean = 12.6 ± 6.8) than in healthy glandular ([PC+GPC]mean = 3.55 ± 1.53, P < 0.01; [tCho]mean = 7.06 ± 2.36, P < 0.01; [Lac]mean = 46.5 ± 17.4, P < 0.01; [Ala]mean = 8.63 ± 4.91, P = 0.051) and healthy stromal tissues ([PC+GPC]mean = 4.34 ± 2.46, P < 0.01; [tCho]mean = 7.04 ± 3.10, P < 0.01; [Lac]mean = 45.1 ± 18.6, P < 0.01; [Ala]mean = 6.80 ± 2.95, P < 0.01), while Cit and PA concentrations were significantly higher in healthy glandular tissues ([Cit]mean = 43.1 ± 21.2, [PAs]mean = 18.5 ± 15.6) than in healthy stromal ([Cit]mean = 16.1 ± 5.6, P < 0.01; [PAs]mean = 3.15 ± 1.81, P < 0.01) and prostate cancer tissues ([Cit]mean = 19.6 ± 12.7, P < 0.01; [PAs]mean = 5.28 ± 5.44, P < 0.01). Serial spectra acquired over 12 hr indicated that the degradation of Cho‐containing metabolites was minimized by acquiring HR‐MAS data at 1°C compared to 20°C. Magn Reson Med, 2006. © 2006 Wiley‐Liss, Inc.]]></abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>16685733</pmid><doi>10.1002/mrm.20909</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2006-06, Vol.55 (6), p.1257-1264 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_68016887 |
source | MEDLINE; Wiley Journals; Wiley Free Content |
subjects | Algorithms Biomarkers, Tumor - analysis Biomarkers, Tumor - metabolism concentration degradation Diagnosis, Computer-Assisted - methods Humans Lorentzian-Gaussian peak fitting Magnetic Resonance Spectroscopy - methods Male Prostate - metabolism Prostatic Neoplasms - diagnosis Prostatic Neoplasms - metabolism Protons relaxation times Reproducibility of Results rotors Sensitivity and Specificity Spin Labels Tumor Cells, Cultured |
title | Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A14%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20analysis%20of%20prostate%20metabolites%20using%201H%20HR-MAS%20spectroscopy&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Swanson,%20Mark%20G.&rft.date=2006-06&rft.volume=55&rft.issue=6&rft.spage=1257&rft.epage=1264&rft.pages=1257-1264&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.20909&rft_dat=%3Cproquest_pubme%3E68016887%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20852106&rft_id=info:pmid/16685733&rfr_iscdi=true |