Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy

A method was developed to quantify prostate metabolite concentrations using 1H high‐resolution magic angle spinning (HR‐MAS) spectroscopy. T1 and T2 relaxation times (in milliseconds) were determined for the major prostate metabolites and an internal TSP standard, and used to optimize the acquisitio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2006-06, Vol.55 (6), p.1257-1264
Hauptverfasser: Swanson, Mark G., Zektzer, Andrew S., Tabatabai, Z. Laura, Simko, Jeffry, Jarso, Samson, Keshari, Kayvan R., Schmitt, Lars, Carroll, Peter R., Shinohara, Katsuto, Vigneron, Daniel B., Kurhanewicz, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1264
container_issue 6
container_start_page 1257
container_title Magnetic resonance in medicine
container_volume 55
creator Swanson, Mark G.
Zektzer, Andrew S.
Tabatabai, Z. Laura
Simko, Jeffry
Jarso, Samson
Keshari, Kayvan R.
Schmitt, Lars
Carroll, Peter R.
Shinohara, Katsuto
Vigneron, Daniel B.
Kurhanewicz, John
description A method was developed to quantify prostate metabolite concentrations using 1H high‐resolution magic angle spinning (HR‐MAS) spectroscopy. T1 and T2 relaxation times (in milliseconds) were determined for the major prostate metabolites and an internal TSP standard, and used to optimize the acquisition and repetition times (TRs) at 11.7 T. At 1°C, polyamines (PAs; T1mean = 100 ± 13, T2mean = 30.8 ± 7.4) and citrate (Cit; T1mean = 237 ± 39, T2mean = 68.1 ± 8.2) demonstrated the shortest relaxation times, while taurine (Tau; T1mean = 636 ± 78, T2mean = 331 ± 71) and choline (Cho; T1mean = 608 ± 60, T2mean = 393 ± 81) demonstrated the longest relaxation times. Millimolal metabolite concentrations were calculated for 60 postsurgical tissues using metabolite and TSP peak areas, and the mass of tissue and TSP. Phosphocholine plus glycerophosphocholine (PC+GPC), total choline (tCho), lactate (Lac), and alanine (Ala) concentrations were higher in prostate cancer ([PC+GPC]mean = 9.34 ± 6.43, [tCho]mean = 13.8 ± 7.4, [Lac]mean = 69.8 ± 27.1, [Ala]mean = 12.6 ± 6.8) than in healthy glandular ([PC+GPC]mean = 3.55 ± 1.53, P < 0.01; [tCho]mean = 7.06 ± 2.36, P < 0.01; [Lac]mean = 46.5 ± 17.4, P < 0.01; [Ala]mean = 8.63 ± 4.91, P = 0.051) and healthy stromal tissues ([PC+GPC]mean = 4.34 ± 2.46, P < 0.01; [tCho]mean = 7.04 ± 3.10, P < 0.01; [Lac]mean = 45.1 ± 18.6, P < 0.01; [Ala]mean = 6.80 ± 2.95, P < 0.01), while Cit and PA concentrations were significantly higher in healthy glandular tissues ([Cit]mean = 43.1 ± 21.2, [PAs]mean = 18.5 ± 15.6) than in healthy stromal ([Cit]mean = 16.1 ± 5.6, P < 0.01; [PAs]mean = 3.15 ± 1.81, P < 0.01) and prostate cancer tissues ([Cit]mean = 19.6 ± 12.7, P < 0.01; [PAs]mean = 5.28 ± 5.44, P < 0.01). Serial spectra acquired over 12 hr indicated that the degradation of Cho‐containing metabolites was minimized by acquiring HR‐MAS data at 1°C compared to 20°C. Magn Reson Med, 2006. © 2006 Wiley‐Liss, Inc.
doi_str_mv 10.1002/mrm.20909
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_68016887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68016887</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1639-aa7baf2bfd6f7121aee142c19bf7b858f181402c2ff9b3e035f75d983fd877273</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEgjE48AdQT9y62UnbJMcxwcbY-EYco7RLUKBdR9MC-_cUxseRky37eS3rIeQAoYcAtF9URY-CBLlBOhhTGtJYRpukAzyCkKGMdsiu908AICWPtskOJomIOWMdMrlu9KJ2ta7dqwn0Qucr73xQ2mBZlb4dm6AwtU7L3NXGB413i8cAx8H4JpwNbgO_NFndglm5XO2RLatzb_a_a5fcn57cDcfh9HJ0NhxMQ4cJk6HWPNWWpnaeWI4UtTEY0QxlankqYmFRYAQ0o9bKlBlgseXxXApm54JzylmXHK3vth--NMbXqnA-M3muF6ZsvEoEYCLE_yAFEVOEpAUPv8EmLcxcLStX6GqlfjS1QH8NvLncrP72oD79q9a_-vKvZjezr6ZNhOuE87V5_03o6lklnPFYPVyM1Oj46nyCEhWwD3cmhls</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20852106</pqid></control><display><type>article</type><title>Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy</title><source>MEDLINE</source><source>Wiley Journals</source><source>Wiley Free Content</source><creator>Swanson, Mark G. ; Zektzer, Andrew S. ; Tabatabai, Z. Laura ; Simko, Jeffry ; Jarso, Samson ; Keshari, Kayvan R. ; Schmitt, Lars ; Carroll, Peter R. ; Shinohara, Katsuto ; Vigneron, Daniel B. ; Kurhanewicz, John</creator><creatorcontrib>Swanson, Mark G. ; Zektzer, Andrew S. ; Tabatabai, Z. Laura ; Simko, Jeffry ; Jarso, Samson ; Keshari, Kayvan R. ; Schmitt, Lars ; Carroll, Peter R. ; Shinohara, Katsuto ; Vigneron, Daniel B. ; Kurhanewicz, John</creatorcontrib><description><![CDATA[A method was developed to quantify prostate metabolite concentrations using 1H high‐resolution magic angle spinning (HR‐MAS) spectroscopy. T1 and T2 relaxation times (in milliseconds) were determined for the major prostate metabolites and an internal TSP standard, and used to optimize the acquisition and repetition times (TRs) at 11.7 T. At 1°C, polyamines (PAs; T1mean = 100 ± 13, T2mean = 30.8 ± 7.4) and citrate (Cit; T1mean = 237 ± 39, T2mean = 68.1 ± 8.2) demonstrated the shortest relaxation times, while taurine (Tau; T1mean = 636 ± 78, T2mean = 331 ± 71) and choline (Cho; T1mean = 608 ± 60, T2mean = 393 ± 81) demonstrated the longest relaxation times. Millimolal metabolite concentrations were calculated for 60 postsurgical tissues using metabolite and TSP peak areas, and the mass of tissue and TSP. Phosphocholine plus glycerophosphocholine (PC+GPC), total choline (tCho), lactate (Lac), and alanine (Ala) concentrations were higher in prostate cancer ([PC+GPC]mean = 9.34 ± 6.43, [tCho]mean = 13.8 ± 7.4, [Lac]mean = 69.8 ± 27.1, [Ala]mean = 12.6 ± 6.8) than in healthy glandular ([PC+GPC]mean = 3.55 ± 1.53, P < 0.01; [tCho]mean = 7.06 ± 2.36, P < 0.01; [Lac]mean = 46.5 ± 17.4, P < 0.01; [Ala]mean = 8.63 ± 4.91, P = 0.051) and healthy stromal tissues ([PC+GPC]mean = 4.34 ± 2.46, P < 0.01; [tCho]mean = 7.04 ± 3.10, P < 0.01; [Lac]mean = 45.1 ± 18.6, P < 0.01; [Ala]mean = 6.80 ± 2.95, P < 0.01), while Cit and PA concentrations were significantly higher in healthy glandular tissues ([Cit]mean = 43.1 ± 21.2, [PAs]mean = 18.5 ± 15.6) than in healthy stromal ([Cit]mean = 16.1 ± 5.6, P < 0.01; [PAs]mean = 3.15 ± 1.81, P < 0.01) and prostate cancer tissues ([Cit]mean = 19.6 ± 12.7, P < 0.01; [PAs]mean = 5.28 ± 5.44, P < 0.01). Serial spectra acquired over 12 hr indicated that the degradation of Cho‐containing metabolites was minimized by acquiring HR‐MAS data at 1°C compared to 20°C. Magn Reson Med, 2006. © 2006 Wiley‐Liss, Inc.]]></description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.20909</identifier><identifier>PMID: 16685733</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algorithms ; Biomarkers, Tumor - analysis ; Biomarkers, Tumor - metabolism ; concentration ; degradation ; Diagnosis, Computer-Assisted - methods ; Humans ; Lorentzian-Gaussian peak fitting ; Magnetic Resonance Spectroscopy - methods ; Male ; Prostate - metabolism ; Prostatic Neoplasms - diagnosis ; Prostatic Neoplasms - metabolism ; Protons ; relaxation times ; Reproducibility of Results ; rotors ; Sensitivity and Specificity ; Spin Labels ; Tumor Cells, Cultured</subject><ispartof>Magnetic resonance in medicine, 2006-06, Vol.55 (6), p.1257-1264</ispartof><rights>Copyright © 2006 Wiley‐Liss, Inc.</rights><rights>Copyright 2006 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.20909$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.20909$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16685733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Swanson, Mark G.</creatorcontrib><creatorcontrib>Zektzer, Andrew S.</creatorcontrib><creatorcontrib>Tabatabai, Z. Laura</creatorcontrib><creatorcontrib>Simko, Jeffry</creatorcontrib><creatorcontrib>Jarso, Samson</creatorcontrib><creatorcontrib>Keshari, Kayvan R.</creatorcontrib><creatorcontrib>Schmitt, Lars</creatorcontrib><creatorcontrib>Carroll, Peter R.</creatorcontrib><creatorcontrib>Shinohara, Katsuto</creatorcontrib><creatorcontrib>Vigneron, Daniel B.</creatorcontrib><creatorcontrib>Kurhanewicz, John</creatorcontrib><title>Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description><![CDATA[A method was developed to quantify prostate metabolite concentrations using 1H high‐resolution magic angle spinning (HR‐MAS) spectroscopy. T1 and T2 relaxation times (in milliseconds) were determined for the major prostate metabolites and an internal TSP standard, and used to optimize the acquisition and repetition times (TRs) at 11.7 T. At 1°C, polyamines (PAs; T1mean = 100 ± 13, T2mean = 30.8 ± 7.4) and citrate (Cit; T1mean = 237 ± 39, T2mean = 68.1 ± 8.2) demonstrated the shortest relaxation times, while taurine (Tau; T1mean = 636 ± 78, T2mean = 331 ± 71) and choline (Cho; T1mean = 608 ± 60, T2mean = 393 ± 81) demonstrated the longest relaxation times. Millimolal metabolite concentrations were calculated for 60 postsurgical tissues using metabolite and TSP peak areas, and the mass of tissue and TSP. Phosphocholine plus glycerophosphocholine (PC+GPC), total choline (tCho), lactate (Lac), and alanine (Ala) concentrations were higher in prostate cancer ([PC+GPC]mean = 9.34 ± 6.43, [tCho]mean = 13.8 ± 7.4, [Lac]mean = 69.8 ± 27.1, [Ala]mean = 12.6 ± 6.8) than in healthy glandular ([PC+GPC]mean = 3.55 ± 1.53, P < 0.01; [tCho]mean = 7.06 ± 2.36, P < 0.01; [Lac]mean = 46.5 ± 17.4, P < 0.01; [Ala]mean = 8.63 ± 4.91, P = 0.051) and healthy stromal tissues ([PC+GPC]mean = 4.34 ± 2.46, P < 0.01; [tCho]mean = 7.04 ± 3.10, P < 0.01; [Lac]mean = 45.1 ± 18.6, P < 0.01; [Ala]mean = 6.80 ± 2.95, P < 0.01), while Cit and PA concentrations were significantly higher in healthy glandular tissues ([Cit]mean = 43.1 ± 21.2, [PAs]mean = 18.5 ± 15.6) than in healthy stromal ([Cit]mean = 16.1 ± 5.6, P < 0.01; [PAs]mean = 3.15 ± 1.81, P < 0.01) and prostate cancer tissues ([Cit]mean = 19.6 ± 12.7, P < 0.01; [PAs]mean = 5.28 ± 5.44, P < 0.01). Serial spectra acquired over 12 hr indicated that the degradation of Cho‐containing metabolites was minimized by acquiring HR‐MAS data at 1°C compared to 20°C. Magn Reson Med, 2006. © 2006 Wiley‐Liss, Inc.]]></description><subject>Algorithms</subject><subject>Biomarkers, Tumor - analysis</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>concentration</subject><subject>degradation</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Humans</subject><subject>Lorentzian-Gaussian peak fitting</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Male</subject><subject>Prostate - metabolism</subject><subject>Prostatic Neoplasms - diagnosis</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>Protons</subject><subject>relaxation times</subject><subject>Reproducibility of Results</subject><subject>rotors</subject><subject>Sensitivity and Specificity</subject><subject>Spin Labels</subject><subject>Tumor Cells, Cultured</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1PwzAMhiMEgjE48AdQT9y62UnbJMcxwcbY-EYco7RLUKBdR9MC-_cUxseRky37eS3rIeQAoYcAtF9URY-CBLlBOhhTGtJYRpukAzyCkKGMdsiu908AICWPtskOJomIOWMdMrlu9KJ2ta7dqwn0Qucr73xQ2mBZlb4dm6AwtU7L3NXGB413i8cAx8H4JpwNbgO_NFndglm5XO2RLatzb_a_a5fcn57cDcfh9HJ0NhxMQ4cJk6HWPNWWpnaeWI4UtTEY0QxlankqYmFRYAQ0o9bKlBlgseXxXApm54JzylmXHK3vth--NMbXqnA-M3muF6ZsvEoEYCLE_yAFEVOEpAUPv8EmLcxcLStX6GqlfjS1QH8NvLncrP72oD79q9a_-vKvZjezr6ZNhOuE87V5_03o6lklnPFYPVyM1Oj46nyCEhWwD3cmhls</recordid><startdate>200606</startdate><enddate>200606</enddate><creator>Swanson, Mark G.</creator><creator>Zektzer, Andrew S.</creator><creator>Tabatabai, Z. Laura</creator><creator>Simko, Jeffry</creator><creator>Jarso, Samson</creator><creator>Keshari, Kayvan R.</creator><creator>Schmitt, Lars</creator><creator>Carroll, Peter R.</creator><creator>Shinohara, Katsuto</creator><creator>Vigneron, Daniel B.</creator><creator>Kurhanewicz, John</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200606</creationdate><title>Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy</title><author>Swanson, Mark G. ; Zektzer, Andrew S. ; Tabatabai, Z. Laura ; Simko, Jeffry ; Jarso, Samson ; Keshari, Kayvan R. ; Schmitt, Lars ; Carroll, Peter R. ; Shinohara, Katsuto ; Vigneron, Daniel B. ; Kurhanewicz, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1639-aa7baf2bfd6f7121aee142c19bf7b858f181402c2ff9b3e035f75d983fd877273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Biomarkers, Tumor - analysis</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>concentration</topic><topic>degradation</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Humans</topic><topic>Lorentzian-Gaussian peak fitting</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Male</topic><topic>Prostate - metabolism</topic><topic>Prostatic Neoplasms - diagnosis</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>Protons</topic><topic>relaxation times</topic><topic>Reproducibility of Results</topic><topic>rotors</topic><topic>Sensitivity and Specificity</topic><topic>Spin Labels</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swanson, Mark G.</creatorcontrib><creatorcontrib>Zektzer, Andrew S.</creatorcontrib><creatorcontrib>Tabatabai, Z. Laura</creatorcontrib><creatorcontrib>Simko, Jeffry</creatorcontrib><creatorcontrib>Jarso, Samson</creatorcontrib><creatorcontrib>Keshari, Kayvan R.</creatorcontrib><creatorcontrib>Schmitt, Lars</creatorcontrib><creatorcontrib>Carroll, Peter R.</creatorcontrib><creatorcontrib>Shinohara, Katsuto</creatorcontrib><creatorcontrib>Vigneron, Daniel B.</creatorcontrib><creatorcontrib>Kurhanewicz, John</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swanson, Mark G.</au><au>Zektzer, Andrew S.</au><au>Tabatabai, Z. Laura</au><au>Simko, Jeffry</au><au>Jarso, Samson</au><au>Keshari, Kayvan R.</au><au>Schmitt, Lars</au><au>Carroll, Peter R.</au><au>Shinohara, Katsuto</au><au>Vigneron, Daniel B.</au><au>Kurhanewicz, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2006-06</date><risdate>2006</risdate><volume>55</volume><issue>6</issue><spage>1257</spage><epage>1264</epage><pages>1257-1264</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract><![CDATA[A method was developed to quantify prostate metabolite concentrations using 1H high‐resolution magic angle spinning (HR‐MAS) spectroscopy. T1 and T2 relaxation times (in milliseconds) were determined for the major prostate metabolites and an internal TSP standard, and used to optimize the acquisition and repetition times (TRs) at 11.7 T. At 1°C, polyamines (PAs; T1mean = 100 ± 13, T2mean = 30.8 ± 7.4) and citrate (Cit; T1mean = 237 ± 39, T2mean = 68.1 ± 8.2) demonstrated the shortest relaxation times, while taurine (Tau; T1mean = 636 ± 78, T2mean = 331 ± 71) and choline (Cho; T1mean = 608 ± 60, T2mean = 393 ± 81) demonstrated the longest relaxation times. Millimolal metabolite concentrations were calculated for 60 postsurgical tissues using metabolite and TSP peak areas, and the mass of tissue and TSP. Phosphocholine plus glycerophosphocholine (PC+GPC), total choline (tCho), lactate (Lac), and alanine (Ala) concentrations were higher in prostate cancer ([PC+GPC]mean = 9.34 ± 6.43, [tCho]mean = 13.8 ± 7.4, [Lac]mean = 69.8 ± 27.1, [Ala]mean = 12.6 ± 6.8) than in healthy glandular ([PC+GPC]mean = 3.55 ± 1.53, P < 0.01; [tCho]mean = 7.06 ± 2.36, P < 0.01; [Lac]mean = 46.5 ± 17.4, P < 0.01; [Ala]mean = 8.63 ± 4.91, P = 0.051) and healthy stromal tissues ([PC+GPC]mean = 4.34 ± 2.46, P < 0.01; [tCho]mean = 7.04 ± 3.10, P < 0.01; [Lac]mean = 45.1 ± 18.6, P < 0.01; [Ala]mean = 6.80 ± 2.95, P < 0.01), while Cit and PA concentrations were significantly higher in healthy glandular tissues ([Cit]mean = 43.1 ± 21.2, [PAs]mean = 18.5 ± 15.6) than in healthy stromal ([Cit]mean = 16.1 ± 5.6, P < 0.01; [PAs]mean = 3.15 ± 1.81, P < 0.01) and prostate cancer tissues ([Cit]mean = 19.6 ± 12.7, P < 0.01; [PAs]mean = 5.28 ± 5.44, P < 0.01). Serial spectra acquired over 12 hr indicated that the degradation of Cho‐containing metabolites was minimized by acquiring HR‐MAS data at 1°C compared to 20°C. Magn Reson Med, 2006. © 2006 Wiley‐Liss, Inc.]]></abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>16685733</pmid><doi>10.1002/mrm.20909</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2006-06, Vol.55 (6), p.1257-1264
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_68016887
source MEDLINE; Wiley Journals; Wiley Free Content
subjects Algorithms
Biomarkers, Tumor - analysis
Biomarkers, Tumor - metabolism
concentration
degradation
Diagnosis, Computer-Assisted - methods
Humans
Lorentzian-Gaussian peak fitting
Magnetic Resonance Spectroscopy - methods
Male
Prostate - metabolism
Prostatic Neoplasms - diagnosis
Prostatic Neoplasms - metabolism
Protons
relaxation times
Reproducibility of Results
rotors
Sensitivity and Specificity
Spin Labels
Tumor Cells, Cultured
title Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A14%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20analysis%20of%20prostate%20metabolites%20using%201H%20HR-MAS%20spectroscopy&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Swanson,%20Mark%20G.&rft.date=2006-06&rft.volume=55&rft.issue=6&rft.spage=1257&rft.epage=1264&rft.pages=1257-1264&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.20909&rft_dat=%3Cproquest_pubme%3E68016887%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20852106&rft_id=info:pmid/16685733&rfr_iscdi=true