Identification of organ‐specific T cell populations by analysis of multiparameter flow cytometry data using DNA‐chip analysis software

Background: The analysis of cells from multiple experimental groups by multiparameter flow cytometry leads to the generation of complex data sets, for which adequate analysis tools are not commonly available. We report here that software designed for transcriptomics applications can be used in multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytometry. Part A 2006-06, Vol.69A (6), p.533-540
Hauptverfasser: Hofmann, Matthias, Zerwes, Hans‐Günter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 540
container_issue 6
container_start_page 533
container_title Cytometry. Part A
container_volume 69A
creator Hofmann, Matthias
Zerwes, Hans‐Günter
description Background: The analysis of cells from multiple experimental groups by multiparameter flow cytometry leads to the generation of complex data sets, for which adequate analysis tools are not commonly available. We report here that software designed for transcriptomics applications can be used in multiparameter flow cytometry. Methods: Lymphocytes isolated from nine different mouse organs were stained and subjected to 10‐parameter flow cytometry. The resulting data set contained 594 different T cell subsets per organ per mouse and was organized into a so‐called flow cytometry array (FCA). Results: Computation of a hierarchical tree revealed that lymph nodes and spleen were populated by similar T cell subsets, while T cells from peripheral organs displayed a diverse subset composition. Furthermore, organ‐specific T cell subsets were identified. Conclusions: This new FCA concept in flow cytomics proved to be a valuable tool for the fast and unbiased analysis of complex multiparameter flow cytometry data sets. It can be used for assessing disease progression and therapeutic intervention, and for the association of disease‐related biomarkers on the protein level. © 2006 International Society for Analytical Cytology
doi_str_mv 10.1002/cyto.a.20278
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68015243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68015243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4028-6e7f7b259321323abf5e99ebbe2039dbbe1b981d56ec2076b0b10780134b6ae3</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhi0E4ntjRp6YaDnbcdKMqHxKCJYuTJadXMAoiYOdqMrGzMRv5JeQ0Ao2mM7WPffIvpeQIwZTBsDPsr51Uz3lwJPZBtllUvJJlArY_DlzvkP2QngBEBIE3yY7LI6jGKJ0l7zf5li3trCZbq2rqSuo80-6_nz7CA1mY4MuaIZlSRvXdOU3Fajpqa512QcbxpGqK1vbaK8rbNHTonRLOr5ruPqe5rrVtAu2fqIX9-eDOXu2ze98cEW71B4PyFahy4CH67pPFleXi_nN5O7h-nZ-fjfJIuCzSYxJkRguU8GZ4EKbQmKaojHIQaT5UJlJZyyXMWYcktiAYZDMgInIxBrFPjlZaRvvXjsMrapsGD-oa3RdUPGASh6Jf0EOkicySQbwdAVm3oXgsVCNt5X2vWKgxozUuAul1XdGA3689namwvwXXocyAGIFLG2J_Z8yNX9cPKy0X1o7osw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20527577</pqid></control><display><type>article</type><title>Identification of organ‐specific T cell populations by analysis of multiparameter flow cytometry data using DNA‐chip analysis software</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Hofmann, Matthias ; Zerwes, Hans‐Günter</creator><creatorcontrib>Hofmann, Matthias ; Zerwes, Hans‐Günter</creatorcontrib><description>Background: The analysis of cells from multiple experimental groups by multiparameter flow cytometry leads to the generation of complex data sets, for which adequate analysis tools are not commonly available. We report here that software designed for transcriptomics applications can be used in multiparameter flow cytometry. Methods: Lymphocytes isolated from nine different mouse organs were stained and subjected to 10‐parameter flow cytometry. The resulting data set contained 594 different T cell subsets per organ per mouse and was organized into a so‐called flow cytometry array (FCA). Results: Computation of a hierarchical tree revealed that lymph nodes and spleen were populated by similar T cell subsets, while T cells from peripheral organs displayed a diverse subset composition. Furthermore, organ‐specific T cell subsets were identified. Conclusions: This new FCA concept in flow cytomics proved to be a valuable tool for the fast and unbiased analysis of complex multiparameter flow cytometry data sets. It can be used for assessing disease progression and therapeutic intervention, and for the association of disease‐related biomarkers on the protein level. © 2006 International Society for Analytical Cytology</description><identifier>ISSN: 1552-4922</identifier><identifier>EISSN: 1552-4930</identifier><identifier>DOI: 10.1002/cyto.a.20278</identifier><identifier>PMID: 16646049</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; cell surface antigens ; Data Interpretation, Statistical ; Female ; flow cytometry ; Flow Cytometry - methods ; Mice ; Mice, Inbred C57BL ; microarray analysis ; mouse ; Multivariate Analysis ; Oligonucleotide Array Sequence Analysis - methods ; Organ Specificity ; Software ; T-Lymphocyte Subsets - classification ; tissue distribution ; T‐lymphocytes</subject><ispartof>Cytometry. Part A, 2006-06, Vol.69A (6), p.533-540</ispartof><rights>Copyright © 2006 International Society for Analytical Cytology</rights><rights>Copyright 2006 International Society for Analytical Cytology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4028-6e7f7b259321323abf5e99ebbe2039dbbe1b981d56ec2076b0b10780134b6ae3</citedby><cites>FETCH-LOGICAL-c4028-6e7f7b259321323abf5e99ebbe2039dbbe1b981d56ec2076b0b10780134b6ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcyto.a.20278$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcyto.a.20278$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16646049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hofmann, Matthias</creatorcontrib><creatorcontrib>Zerwes, Hans‐Günter</creatorcontrib><title>Identification of organ‐specific T cell populations by analysis of multiparameter flow cytometry data using DNA‐chip analysis software</title><title>Cytometry. Part A</title><addtitle>Cytometry A</addtitle><description>Background: The analysis of cells from multiple experimental groups by multiparameter flow cytometry leads to the generation of complex data sets, for which adequate analysis tools are not commonly available. We report here that software designed for transcriptomics applications can be used in multiparameter flow cytometry. Methods: Lymphocytes isolated from nine different mouse organs were stained and subjected to 10‐parameter flow cytometry. The resulting data set contained 594 different T cell subsets per organ per mouse and was organized into a so‐called flow cytometry array (FCA). Results: Computation of a hierarchical tree revealed that lymph nodes and spleen were populated by similar T cell subsets, while T cells from peripheral organs displayed a diverse subset composition. Furthermore, organ‐specific T cell subsets were identified. Conclusions: This new FCA concept in flow cytomics proved to be a valuable tool for the fast and unbiased analysis of complex multiparameter flow cytometry data sets. It can be used for assessing disease progression and therapeutic intervention, and for the association of disease‐related biomarkers on the protein level. © 2006 International Society for Analytical Cytology</description><subject>Animals</subject><subject>cell surface antigens</subject><subject>Data Interpretation, Statistical</subject><subject>Female</subject><subject>flow cytometry</subject><subject>Flow Cytometry - methods</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>microarray analysis</subject><subject>mouse</subject><subject>Multivariate Analysis</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Organ Specificity</subject><subject>Software</subject><subject>T-Lymphocyte Subsets - classification</subject><subject>tissue distribution</subject><subject>T‐lymphocytes</subject><issn>1552-4922</issn><issn>1552-4930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkT1PwzAQhi0E4ntjRp6YaDnbcdKMqHxKCJYuTJadXMAoiYOdqMrGzMRv5JeQ0Ao2mM7WPffIvpeQIwZTBsDPsr51Uz3lwJPZBtllUvJJlArY_DlzvkP2QngBEBIE3yY7LI6jGKJ0l7zf5li3trCZbq2rqSuo80-6_nz7CA1mY4MuaIZlSRvXdOU3Fajpqa512QcbxpGqK1vbaK8rbNHTonRLOr5ruPqe5rrVtAu2fqIX9-eDOXu2ze98cEW71B4PyFahy4CH67pPFleXi_nN5O7h-nZ-fjfJIuCzSYxJkRguU8GZ4EKbQmKaojHIQaT5UJlJZyyXMWYcktiAYZDMgInIxBrFPjlZaRvvXjsMrapsGD-oa3RdUPGASh6Jf0EOkicySQbwdAVm3oXgsVCNt5X2vWKgxozUuAul1XdGA3689namwvwXXocyAGIFLG2J_Z8yNX9cPKy0X1o7osw</recordid><startdate>200606</startdate><enddate>200606</enddate><creator>Hofmann, Matthias</creator><creator>Zerwes, Hans‐Günter</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200606</creationdate><title>Identification of organ‐specific T cell populations by analysis of multiparameter flow cytometry data using DNA‐chip analysis software</title><author>Hofmann, Matthias ; Zerwes, Hans‐Günter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4028-6e7f7b259321323abf5e99ebbe2039dbbe1b981d56ec2076b0b10780134b6ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>cell surface antigens</topic><topic>Data Interpretation, Statistical</topic><topic>Female</topic><topic>flow cytometry</topic><topic>Flow Cytometry - methods</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>microarray analysis</topic><topic>mouse</topic><topic>Multivariate Analysis</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Organ Specificity</topic><topic>Software</topic><topic>T-Lymphocyte Subsets - classification</topic><topic>tissue distribution</topic><topic>T‐lymphocytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hofmann, Matthias</creatorcontrib><creatorcontrib>Zerwes, Hans‐Günter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cytometry. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hofmann, Matthias</au><au>Zerwes, Hans‐Günter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of organ‐specific T cell populations by analysis of multiparameter flow cytometry data using DNA‐chip analysis software</atitle><jtitle>Cytometry. Part A</jtitle><addtitle>Cytometry A</addtitle><date>2006-06</date><risdate>2006</risdate><volume>69A</volume><issue>6</issue><spage>533</spage><epage>540</epage><pages>533-540</pages><issn>1552-4922</issn><eissn>1552-4930</eissn><abstract>Background: The analysis of cells from multiple experimental groups by multiparameter flow cytometry leads to the generation of complex data sets, for which adequate analysis tools are not commonly available. We report here that software designed for transcriptomics applications can be used in multiparameter flow cytometry. Methods: Lymphocytes isolated from nine different mouse organs were stained and subjected to 10‐parameter flow cytometry. The resulting data set contained 594 different T cell subsets per organ per mouse and was organized into a so‐called flow cytometry array (FCA). Results: Computation of a hierarchical tree revealed that lymph nodes and spleen were populated by similar T cell subsets, while T cells from peripheral organs displayed a diverse subset composition. Furthermore, organ‐specific T cell subsets were identified. Conclusions: This new FCA concept in flow cytomics proved to be a valuable tool for the fast and unbiased analysis of complex multiparameter flow cytometry data sets. It can be used for assessing disease progression and therapeutic intervention, and for the association of disease‐related biomarkers on the protein level. © 2006 International Society for Analytical Cytology</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>16646049</pmid><doi>10.1002/cyto.a.20278</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-4922
ispartof Cytometry. Part A, 2006-06, Vol.69A (6), p.533-540
issn 1552-4922
1552-4930
language eng
recordid cdi_proquest_miscellaneous_68015243
source MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Animals
cell surface antigens
Data Interpretation, Statistical
Female
flow cytometry
Flow Cytometry - methods
Mice
Mice, Inbred C57BL
microarray analysis
mouse
Multivariate Analysis
Oligonucleotide Array Sequence Analysis - methods
Organ Specificity
Software
T-Lymphocyte Subsets - classification
tissue distribution
T‐lymphocytes
title Identification of organ‐specific T cell populations by analysis of multiparameter flow cytometry data using DNA‐chip analysis software
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20organ%E2%80%90specific%20T%20cell%20populations%20by%20analysis%20of%20multiparameter%20flow%20cytometry%20data%20using%20DNA%E2%80%90chip%20analysis%20software&rft.jtitle=Cytometry.%20Part%20A&rft.au=Hofmann,%20Matthias&rft.date=2006-06&rft.volume=69A&rft.issue=6&rft.spage=533&rft.epage=540&rft.pages=533-540&rft.issn=1552-4922&rft.eissn=1552-4930&rft_id=info:doi/10.1002/cyto.a.20278&rft_dat=%3Cproquest_cross%3E68015243%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20527577&rft_id=info:pmid/16646049&rfr_iscdi=true