Meta-Analytic Methods of Pooling Correlation Matrices for Structural Equation Modeling Under Different Patterns of Missing Data

Three methods of synthesizing correlations for meta-analytic structural equation modeling (SEM) under different degrees and mechanisms of missingness were compared for the estimation of correlation and SEM parameters and goodness-of-fit indices by using Monte Carlo simulation techniques. A revised g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological methods 2005-06, Vol.10 (2), p.227-254
Hauptverfasser: Furlow, Carolyn F, Beretvas, S. Natasha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 254
container_issue 2
container_start_page 227
container_title Psychological methods
container_volume 10
creator Furlow, Carolyn F
Beretvas, S. Natasha
description Three methods of synthesizing correlations for meta-analytic structural equation modeling (SEM) under different degrees and mechanisms of missingness were compared for the estimation of correlation and SEM parameters and goodness-of-fit indices by using Monte Carlo simulation techniques. A revised generalized least squares (GLS) method for synthesizing correlations, weighted-covariance GLS (W-COV GLS), was compared with univariate weighting with untransformed correlations (univariate r ) and univariate weighting with Fisher's z -transformed correlations (univariate z ). These 3 methods were crossed with listwise and pairwise deletion. Univariate z and W-COV GLS performed similarly, with W-COV GLS providing slightly better estimation of parameters and more correct model rejection rates. Missing not at random data produced high levels of relative bias in correlation and model parameter estimates and higher incorrect SEM model rejection rates. Pairwise deletion resulted in inflated standard errors for all synthesis methods and higher incorrect rejection rates for the SEM model with univariate weighting procedures.
doi_str_mv 10.1037/1082-989X.10.2.227
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68006683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ735296</ericid><sourcerecordid>614427533</sourcerecordid><originalsourceid>FETCH-LOGICAL-a501t-dccf948b1f8ff74cdf826a070554e4e039c407ba907821bf9cdc782b6b2ba4b43</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxSMEoqXwBRBCVkW5ZfG_JPax2i4F1BWVoBI3a-KMIVU23trOYU98dZzuwkqcPOP5vdHovaJ4zeiCUdF8YFTxUiv9I7cLvuC8eVKcMi10yWQtnub6L3BSvIjxnlImhZLPixNWaa1Yo0-L32tMUF6OMOxSb0nufvkuEu_IrfdDP_4kSx8CDpB6P5I1pNBbjMT5QL6lMNk0BRjI6mE6AL7DR9Xd2GEgV71zGHBM5BZSwjA-bl73Mc7MFSR4WTxzMER8dXjPiruPq-_LT-XN1-vPy8ubEirKUtlZ67RULXPKuUbazileA21oVUmUSIW2kjYtaNoozlqnbWdz1dYtb0G2UpwV7_d7t8E_TBiT2fTR4jDAiH6KplaU1rUSGTz_D7z3U8j-ZIZJyZtKzBDfQzb4GAM6sw39BsLOMGrmbMxsvZmtn3-4ydlk0dvD5qndYHeUHMLIwMUBgGhhcAFG28cjV2shJK8y92bPYQ7j33j1pREV13Uev9uPYQtmG3cWQo52wGg2mI7n_AEPPa47</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>614427533</pqid></control><display><type>article</type><title>Meta-Analytic Methods of Pooling Correlation Matrices for Structural Equation Modeling Under Different Patterns of Missing Data</title><source>MEDLINE</source><source>EBSCOhost APA PsycARTICLES</source><creator>Furlow, Carolyn F ; Beretvas, S. Natasha</creator><creatorcontrib>Furlow, Carolyn F ; Beretvas, S. Natasha</creatorcontrib><description>Three methods of synthesizing correlations for meta-analytic structural equation modeling (SEM) under different degrees and mechanisms of missingness were compared for the estimation of correlation and SEM parameters and goodness-of-fit indices by using Monte Carlo simulation techniques. A revised generalized least squares (GLS) method for synthesizing correlations, weighted-covariance GLS (W-COV GLS), was compared with univariate weighting with untransformed correlations (univariate r ) and univariate weighting with Fisher's z -transformed correlations (univariate z ). These 3 methods were crossed with listwise and pairwise deletion. Univariate z and W-COV GLS performed similarly, with W-COV GLS providing slightly better estimation of parameters and more correct model rejection rates. Missing not at random data produced high levels of relative bias in correlation and model parameter estimates and higher incorrect SEM model rejection rates. Pairwise deletion resulted in inflated standard errors for all synthesis methods and higher incorrect rejection rates for the SEM model with univariate weighting procedures.</description><identifier>ISSN: 1082-989X</identifier><identifier>EISSN: 1939-1463</identifier><identifier>DOI: 10.1037/1082-989X.10.2.227</identifier><identifier>PMID: 15998179</identifier><language>eng</language><publisher>Washington, DC: American Psychological Association</publisher><subject>Biological and medical sciences ; Computation ; Correlation ; Data Analysis ; Data Collection ; Fundamental and applied biological sciences. Psychology ; Goodness of Fit ; Human ; Humans ; Indexes ; Least Squares ; Least Squares Statistics ; Matrices ; Meta Analysis ; Meta-Analysis as Topic ; Models, Psychological ; Monte Carlo Methods ; Multitrait Multimethod Techniques ; Psychology - methods ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychometrics. Statistics. Methodology ; Rejection (Psychology) ; Standard 17 ; Statistical Correlation ; Statistical Estimation ; Statistics. Mathematics ; Structural Equation Modeling ; Structural Equation Models ; Synthesis</subject><ispartof>Psychological methods, 2005-06, Vol.10 (2), p.227-254</ispartof><rights>2005 American Psychological Association</rights><rights>2005 INIST-CNRS</rights><rights>2005, American Psychological Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a501t-dccf948b1f8ff74cdf826a070554e4e039c407ba907821bf9cdc782b6b2ba4b43</citedby><cites>FETCH-LOGICAL-a501t-dccf948b1f8ff74cdf826a070554e4e039c407ba907821bf9cdc782b6b2ba4b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ735296$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16933425$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15998179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Furlow, Carolyn F</creatorcontrib><creatorcontrib>Beretvas, S. Natasha</creatorcontrib><title>Meta-Analytic Methods of Pooling Correlation Matrices for Structural Equation Modeling Under Different Patterns of Missing Data</title><title>Psychological methods</title><addtitle>Psychol Methods</addtitle><description>Three methods of synthesizing correlations for meta-analytic structural equation modeling (SEM) under different degrees and mechanisms of missingness were compared for the estimation of correlation and SEM parameters and goodness-of-fit indices by using Monte Carlo simulation techniques. A revised generalized least squares (GLS) method for synthesizing correlations, weighted-covariance GLS (W-COV GLS), was compared with univariate weighting with untransformed correlations (univariate r ) and univariate weighting with Fisher's z -transformed correlations (univariate z ). These 3 methods were crossed with listwise and pairwise deletion. Univariate z and W-COV GLS performed similarly, with W-COV GLS providing slightly better estimation of parameters and more correct model rejection rates. Missing not at random data produced high levels of relative bias in correlation and model parameter estimates and higher incorrect SEM model rejection rates. Pairwise deletion resulted in inflated standard errors for all synthesis methods and higher incorrect rejection rates for the SEM model with univariate weighting procedures.</description><subject>Biological and medical sciences</subject><subject>Computation</subject><subject>Correlation</subject><subject>Data Analysis</subject><subject>Data Collection</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Goodness of Fit</subject><subject>Human</subject><subject>Humans</subject><subject>Indexes</subject><subject>Least Squares</subject><subject>Least Squares Statistics</subject><subject>Matrices</subject><subject>Meta Analysis</subject><subject>Meta-Analysis as Topic</subject><subject>Models, Psychological</subject><subject>Monte Carlo Methods</subject><subject>Multitrait Multimethod Techniques</subject><subject>Psychology - methods</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychometrics. Statistics. Methodology</subject><subject>Rejection (Psychology)</subject><subject>Standard 17</subject><subject>Statistical Correlation</subject><subject>Statistical Estimation</subject><subject>Statistics. Mathematics</subject><subject>Structural Equation Modeling</subject><subject>Structural Equation Models</subject><subject>Synthesis</subject><issn>1082-989X</issn><issn>1939-1463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU9v1DAQxSMEoqXwBRBCVkW5ZfG_JPax2i4F1BWVoBI3a-KMIVU23trOYU98dZzuwkqcPOP5vdHovaJ4zeiCUdF8YFTxUiv9I7cLvuC8eVKcMi10yWQtnub6L3BSvIjxnlImhZLPixNWaa1Yo0-L32tMUF6OMOxSb0nufvkuEu_IrfdDP_4kSx8CDpB6P5I1pNBbjMT5QL6lMNk0BRjI6mE6AL7DR9Xd2GEgV71zGHBM5BZSwjA-bl73Mc7MFSR4WTxzMER8dXjPiruPq-_LT-XN1-vPy8ubEirKUtlZ67RULXPKuUbazileA21oVUmUSIW2kjYtaNoozlqnbWdz1dYtb0G2UpwV7_d7t8E_TBiT2fTR4jDAiH6KplaU1rUSGTz_D7z3U8j-ZIZJyZtKzBDfQzb4GAM6sw39BsLOMGrmbMxsvZmtn3-4ydlk0dvD5qndYHeUHMLIwMUBgGhhcAFG28cjV2shJK8y92bPYQ7j33j1pREV13Uev9uPYQtmG3cWQo52wGg2mI7n_AEPPa47</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Furlow, Carolyn F</creator><creator>Beretvas, S. Natasha</creator><general>American Psychological Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PSYQQ</scope><scope>7X8</scope></search><sort><creationdate>20050601</creationdate><title>Meta-Analytic Methods of Pooling Correlation Matrices for Structural Equation Modeling Under Different Patterns of Missing Data</title><author>Furlow, Carolyn F ; Beretvas, S. Natasha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a501t-dccf948b1f8ff74cdf826a070554e4e039c407ba907821bf9cdc782b6b2ba4b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological and medical sciences</topic><topic>Computation</topic><topic>Correlation</topic><topic>Data Analysis</topic><topic>Data Collection</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Goodness of Fit</topic><topic>Human</topic><topic>Humans</topic><topic>Indexes</topic><topic>Least Squares</topic><topic>Least Squares Statistics</topic><topic>Matrices</topic><topic>Meta Analysis</topic><topic>Meta-Analysis as Topic</topic><topic>Models, Psychological</topic><topic>Monte Carlo Methods</topic><topic>Multitrait Multimethod Techniques</topic><topic>Psychology - methods</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychometrics. Statistics. Methodology</topic><topic>Rejection (Psychology)</topic><topic>Standard 17</topic><topic>Statistical Correlation</topic><topic>Statistical Estimation</topic><topic>Statistics. Mathematics</topic><topic>Structural Equation Modeling</topic><topic>Structural Equation Models</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furlow, Carolyn F</creatorcontrib><creatorcontrib>Beretvas, S. Natasha</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>APA PsycArticles®</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><jtitle>Psychological methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furlow, Carolyn F</au><au>Beretvas, S. Natasha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ735296</ericid><atitle>Meta-Analytic Methods of Pooling Correlation Matrices for Structural Equation Modeling Under Different Patterns of Missing Data</atitle><jtitle>Psychological methods</jtitle><addtitle>Psychol Methods</addtitle><date>2005-06-01</date><risdate>2005</risdate><volume>10</volume><issue>2</issue><spage>227</spage><epage>254</epage><pages>227-254</pages><issn>1082-989X</issn><eissn>1939-1463</eissn><abstract>Three methods of synthesizing correlations for meta-analytic structural equation modeling (SEM) under different degrees and mechanisms of missingness were compared for the estimation of correlation and SEM parameters and goodness-of-fit indices by using Monte Carlo simulation techniques. A revised generalized least squares (GLS) method for synthesizing correlations, weighted-covariance GLS (W-COV GLS), was compared with univariate weighting with untransformed correlations (univariate r ) and univariate weighting with Fisher's z -transformed correlations (univariate z ). These 3 methods were crossed with listwise and pairwise deletion. Univariate z and W-COV GLS performed similarly, with W-COV GLS providing slightly better estimation of parameters and more correct model rejection rates. Missing not at random data produced high levels of relative bias in correlation and model parameter estimates and higher incorrect SEM model rejection rates. Pairwise deletion resulted in inflated standard errors for all synthesis methods and higher incorrect rejection rates for the SEM model with univariate weighting procedures.</abstract><cop>Washington, DC</cop><pub>American Psychological Association</pub><pmid>15998179</pmid><doi>10.1037/1082-989X.10.2.227</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1082-989X
ispartof Psychological methods, 2005-06, Vol.10 (2), p.227-254
issn 1082-989X
1939-1463
language eng
recordid cdi_proquest_miscellaneous_68006683
source MEDLINE; EBSCOhost APA PsycARTICLES
subjects Biological and medical sciences
Computation
Correlation
Data Analysis
Data Collection
Fundamental and applied biological sciences. Psychology
Goodness of Fit
Human
Humans
Indexes
Least Squares
Least Squares Statistics
Matrices
Meta Analysis
Meta-Analysis as Topic
Models, Psychological
Monte Carlo Methods
Multitrait Multimethod Techniques
Psychology - methods
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Psychometrics. Statistics. Methodology
Rejection (Psychology)
Standard 17
Statistical Correlation
Statistical Estimation
Statistics. Mathematics
Structural Equation Modeling
Structural Equation Models
Synthesis
title Meta-Analytic Methods of Pooling Correlation Matrices for Structural Equation Modeling Under Different Patterns of Missing Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T23%3A11%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meta-Analytic%20Methods%20of%20Pooling%20Correlation%20Matrices%20for%20Structural%20Equation%20Modeling%20Under%20Different%20Patterns%20of%20Missing%20Data&rft.jtitle=Psychological%20methods&rft.au=Furlow,%20Carolyn%20F&rft.date=2005-06-01&rft.volume=10&rft.issue=2&rft.spage=227&rft.epage=254&rft.pages=227-254&rft.issn=1082-989X&rft.eissn=1939-1463&rft_id=info:doi/10.1037/1082-989X.10.2.227&rft_dat=%3Cproquest_cross%3E614427533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=614427533&rft_id=info:pmid/15998179&rft_ericid=EJ735296&rfr_iscdi=true