Meta-Analytic Methods of Pooling Correlation Matrices for Structural Equation Modeling Under Different Patterns of Missing Data
Three methods of synthesizing correlations for meta-analytic structural equation modeling (SEM) under different degrees and mechanisms of missingness were compared for the estimation of correlation and SEM parameters and goodness-of-fit indices by using Monte Carlo simulation techniques. A revised g...
Gespeichert in:
Veröffentlicht in: | Psychological methods 2005-06, Vol.10 (2), p.227-254 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 254 |
---|---|
container_issue | 2 |
container_start_page | 227 |
container_title | Psychological methods |
container_volume | 10 |
creator | Furlow, Carolyn F Beretvas, S. Natasha |
description | Three methods of synthesizing correlations for meta-analytic structural equation modeling (SEM) under different degrees and mechanisms of missingness were compared for the estimation of correlation and SEM parameters and goodness-of-fit indices by using Monte Carlo simulation techniques. A revised generalized least squares (GLS) method for synthesizing correlations, weighted-covariance GLS (W-COV GLS), was compared with univariate weighting with untransformed correlations (univariate
r
) and univariate weighting with Fisher's
z
-transformed correlations (univariate
z
). These 3 methods were crossed with listwise and pairwise deletion. Univariate
z
and W-COV GLS performed similarly, with W-COV GLS providing slightly better estimation of parameters and more correct model rejection rates. Missing not at random data produced high levels of relative bias in correlation and model parameter estimates and higher incorrect SEM model rejection rates. Pairwise deletion resulted in inflated standard errors for all synthesis methods and higher incorrect rejection rates for the SEM model with univariate weighting procedures. |
doi_str_mv | 10.1037/1082-989X.10.2.227 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68006683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ735296</ericid><sourcerecordid>614427533</sourcerecordid><originalsourceid>FETCH-LOGICAL-a501t-dccf948b1f8ff74cdf826a070554e4e039c407ba907821bf9cdc782b6b2ba4b43</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxSMEoqXwBRBCVkW5ZfG_JPax2i4F1BWVoBI3a-KMIVU23trOYU98dZzuwkqcPOP5vdHovaJ4zeiCUdF8YFTxUiv9I7cLvuC8eVKcMi10yWQtnub6L3BSvIjxnlImhZLPixNWaa1Yo0-L32tMUF6OMOxSb0nufvkuEu_IrfdDP_4kSx8CDpB6P5I1pNBbjMT5QL6lMNk0BRjI6mE6AL7DR9Xd2GEgV71zGHBM5BZSwjA-bl73Mc7MFSR4WTxzMER8dXjPiruPq-_LT-XN1-vPy8ubEirKUtlZ67RULXPKuUbazileA21oVUmUSIW2kjYtaNoozlqnbWdz1dYtb0G2UpwV7_d7t8E_TBiT2fTR4jDAiH6KplaU1rUSGTz_D7z3U8j-ZIZJyZtKzBDfQzb4GAM6sw39BsLOMGrmbMxsvZmtn3-4ydlk0dvD5qndYHeUHMLIwMUBgGhhcAFG28cjV2shJK8y92bPYQ7j33j1pREV13Uev9uPYQtmG3cWQo52wGg2mI7n_AEPPa47</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>614427533</pqid></control><display><type>article</type><title>Meta-Analytic Methods of Pooling Correlation Matrices for Structural Equation Modeling Under Different Patterns of Missing Data</title><source>MEDLINE</source><source>EBSCOhost APA PsycARTICLES</source><creator>Furlow, Carolyn F ; Beretvas, S. Natasha</creator><creatorcontrib>Furlow, Carolyn F ; Beretvas, S. Natasha</creatorcontrib><description>Three methods of synthesizing correlations for meta-analytic structural equation modeling (SEM) under different degrees and mechanisms of missingness were compared for the estimation of correlation and SEM parameters and goodness-of-fit indices by using Monte Carlo simulation techniques. A revised generalized least squares (GLS) method for synthesizing correlations, weighted-covariance GLS (W-COV GLS), was compared with univariate weighting with untransformed correlations (univariate
r
) and univariate weighting with Fisher's
z
-transformed correlations (univariate
z
). These 3 methods were crossed with listwise and pairwise deletion. Univariate
z
and W-COV GLS performed similarly, with W-COV GLS providing slightly better estimation of parameters and more correct model rejection rates. Missing not at random data produced high levels of relative bias in correlation and model parameter estimates and higher incorrect SEM model rejection rates. Pairwise deletion resulted in inflated standard errors for all synthesis methods and higher incorrect rejection rates for the SEM model with univariate weighting procedures.</description><identifier>ISSN: 1082-989X</identifier><identifier>EISSN: 1939-1463</identifier><identifier>DOI: 10.1037/1082-989X.10.2.227</identifier><identifier>PMID: 15998179</identifier><language>eng</language><publisher>Washington, DC: American Psychological Association</publisher><subject>Biological and medical sciences ; Computation ; Correlation ; Data Analysis ; Data Collection ; Fundamental and applied biological sciences. Psychology ; Goodness of Fit ; Human ; Humans ; Indexes ; Least Squares ; Least Squares Statistics ; Matrices ; Meta Analysis ; Meta-Analysis as Topic ; Models, Psychological ; Monte Carlo Methods ; Multitrait Multimethod Techniques ; Psychology - methods ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychometrics. Statistics. Methodology ; Rejection (Psychology) ; Standard 17 ; Statistical Correlation ; Statistical Estimation ; Statistics. Mathematics ; Structural Equation Modeling ; Structural Equation Models ; Synthesis</subject><ispartof>Psychological methods, 2005-06, Vol.10 (2), p.227-254</ispartof><rights>2005 American Psychological Association</rights><rights>2005 INIST-CNRS</rights><rights>2005, American Psychological Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a501t-dccf948b1f8ff74cdf826a070554e4e039c407ba907821bf9cdc782b6b2ba4b43</citedby><cites>FETCH-LOGICAL-a501t-dccf948b1f8ff74cdf826a070554e4e039c407ba907821bf9cdc782b6b2ba4b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ735296$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16933425$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15998179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Furlow, Carolyn F</creatorcontrib><creatorcontrib>Beretvas, S. Natasha</creatorcontrib><title>Meta-Analytic Methods of Pooling Correlation Matrices for Structural Equation Modeling Under Different Patterns of Missing Data</title><title>Psychological methods</title><addtitle>Psychol Methods</addtitle><description>Three methods of synthesizing correlations for meta-analytic structural equation modeling (SEM) under different degrees and mechanisms of missingness were compared for the estimation of correlation and SEM parameters and goodness-of-fit indices by using Monte Carlo simulation techniques. A revised generalized least squares (GLS) method for synthesizing correlations, weighted-covariance GLS (W-COV GLS), was compared with univariate weighting with untransformed correlations (univariate
r
) and univariate weighting with Fisher's
z
-transformed correlations (univariate
z
). These 3 methods were crossed with listwise and pairwise deletion. Univariate
z
and W-COV GLS performed similarly, with W-COV GLS providing slightly better estimation of parameters and more correct model rejection rates. Missing not at random data produced high levels of relative bias in correlation and model parameter estimates and higher incorrect SEM model rejection rates. Pairwise deletion resulted in inflated standard errors for all synthesis methods and higher incorrect rejection rates for the SEM model with univariate weighting procedures.</description><subject>Biological and medical sciences</subject><subject>Computation</subject><subject>Correlation</subject><subject>Data Analysis</subject><subject>Data Collection</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Goodness of Fit</subject><subject>Human</subject><subject>Humans</subject><subject>Indexes</subject><subject>Least Squares</subject><subject>Least Squares Statistics</subject><subject>Matrices</subject><subject>Meta Analysis</subject><subject>Meta-Analysis as Topic</subject><subject>Models, Psychological</subject><subject>Monte Carlo Methods</subject><subject>Multitrait Multimethod Techniques</subject><subject>Psychology - methods</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychometrics. Statistics. Methodology</subject><subject>Rejection (Psychology)</subject><subject>Standard 17</subject><subject>Statistical Correlation</subject><subject>Statistical Estimation</subject><subject>Statistics. Mathematics</subject><subject>Structural Equation Modeling</subject><subject>Structural Equation Models</subject><subject>Synthesis</subject><issn>1082-989X</issn><issn>1939-1463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU9v1DAQxSMEoqXwBRBCVkW5ZfG_JPax2i4F1BWVoBI3a-KMIVU23trOYU98dZzuwkqcPOP5vdHovaJ4zeiCUdF8YFTxUiv9I7cLvuC8eVKcMi10yWQtnub6L3BSvIjxnlImhZLPixNWaa1Yo0-L32tMUF6OMOxSb0nufvkuEu_IrfdDP_4kSx8CDpB6P5I1pNBbjMT5QL6lMNk0BRjI6mE6AL7DR9Xd2GEgV71zGHBM5BZSwjA-bl73Mc7MFSR4WTxzMER8dXjPiruPq-_LT-XN1-vPy8ubEirKUtlZ67RULXPKuUbazileA21oVUmUSIW2kjYtaNoozlqnbWdz1dYtb0G2UpwV7_d7t8E_TBiT2fTR4jDAiH6KplaU1rUSGTz_D7z3U8j-ZIZJyZtKzBDfQzb4GAM6sw39BsLOMGrmbMxsvZmtn3-4ydlk0dvD5qndYHeUHMLIwMUBgGhhcAFG28cjV2shJK8y92bPYQ7j33j1pREV13Uev9uPYQtmG3cWQo52wGg2mI7n_AEPPa47</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Furlow, Carolyn F</creator><creator>Beretvas, S. Natasha</creator><general>American Psychological Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PSYQQ</scope><scope>7X8</scope></search><sort><creationdate>20050601</creationdate><title>Meta-Analytic Methods of Pooling Correlation Matrices for Structural Equation Modeling Under Different Patterns of Missing Data</title><author>Furlow, Carolyn F ; Beretvas, S. Natasha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a501t-dccf948b1f8ff74cdf826a070554e4e039c407ba907821bf9cdc782b6b2ba4b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological and medical sciences</topic><topic>Computation</topic><topic>Correlation</topic><topic>Data Analysis</topic><topic>Data Collection</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Goodness of Fit</topic><topic>Human</topic><topic>Humans</topic><topic>Indexes</topic><topic>Least Squares</topic><topic>Least Squares Statistics</topic><topic>Matrices</topic><topic>Meta Analysis</topic><topic>Meta-Analysis as Topic</topic><topic>Models, Psychological</topic><topic>Monte Carlo Methods</topic><topic>Multitrait Multimethod Techniques</topic><topic>Psychology - methods</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychometrics. Statistics. Methodology</topic><topic>Rejection (Psychology)</topic><topic>Standard 17</topic><topic>Statistical Correlation</topic><topic>Statistical Estimation</topic><topic>Statistics. Mathematics</topic><topic>Structural Equation Modeling</topic><topic>Structural Equation Models</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furlow, Carolyn F</creatorcontrib><creatorcontrib>Beretvas, S. Natasha</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>APA PsycArticles®</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><jtitle>Psychological methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furlow, Carolyn F</au><au>Beretvas, S. Natasha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ735296</ericid><atitle>Meta-Analytic Methods of Pooling Correlation Matrices for Structural Equation Modeling Under Different Patterns of Missing Data</atitle><jtitle>Psychological methods</jtitle><addtitle>Psychol Methods</addtitle><date>2005-06-01</date><risdate>2005</risdate><volume>10</volume><issue>2</issue><spage>227</spage><epage>254</epage><pages>227-254</pages><issn>1082-989X</issn><eissn>1939-1463</eissn><abstract>Three methods of synthesizing correlations for meta-analytic structural equation modeling (SEM) under different degrees and mechanisms of missingness were compared for the estimation of correlation and SEM parameters and goodness-of-fit indices by using Monte Carlo simulation techniques. A revised generalized least squares (GLS) method for synthesizing correlations, weighted-covariance GLS (W-COV GLS), was compared with univariate weighting with untransformed correlations (univariate
r
) and univariate weighting with Fisher's
z
-transformed correlations (univariate
z
). These 3 methods were crossed with listwise and pairwise deletion. Univariate
z
and W-COV GLS performed similarly, with W-COV GLS providing slightly better estimation of parameters and more correct model rejection rates. Missing not at random data produced high levels of relative bias in correlation and model parameter estimates and higher incorrect SEM model rejection rates. Pairwise deletion resulted in inflated standard errors for all synthesis methods and higher incorrect rejection rates for the SEM model with univariate weighting procedures.</abstract><cop>Washington, DC</cop><pub>American Psychological Association</pub><pmid>15998179</pmid><doi>10.1037/1082-989X.10.2.227</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1082-989X |
ispartof | Psychological methods, 2005-06, Vol.10 (2), p.227-254 |
issn | 1082-989X 1939-1463 |
language | eng |
recordid | cdi_proquest_miscellaneous_68006683 |
source | MEDLINE; EBSCOhost APA PsycARTICLES |
subjects | Biological and medical sciences Computation Correlation Data Analysis Data Collection Fundamental and applied biological sciences. Psychology Goodness of Fit Human Humans Indexes Least Squares Least Squares Statistics Matrices Meta Analysis Meta-Analysis as Topic Models, Psychological Monte Carlo Methods Multitrait Multimethod Techniques Psychology - methods Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Psychometrics. Statistics. Methodology Rejection (Psychology) Standard 17 Statistical Correlation Statistical Estimation Statistics. Mathematics Structural Equation Modeling Structural Equation Models Synthesis |
title | Meta-Analytic Methods of Pooling Correlation Matrices for Structural Equation Modeling Under Different Patterns of Missing Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T23%3A11%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meta-Analytic%20Methods%20of%20Pooling%20Correlation%20Matrices%20for%20Structural%20Equation%20Modeling%20Under%20Different%20Patterns%20of%20Missing%20Data&rft.jtitle=Psychological%20methods&rft.au=Furlow,%20Carolyn%20F&rft.date=2005-06-01&rft.volume=10&rft.issue=2&rft.spage=227&rft.epage=254&rft.pages=227-254&rft.issn=1082-989X&rft.eissn=1939-1463&rft_id=info:doi/10.1037/1082-989X.10.2.227&rft_dat=%3Cproquest_cross%3E614427533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=614427533&rft_id=info:pmid/15998179&rft_ericid=EJ735296&rfr_iscdi=true |