Differential gene silencing induced by short interfering RNA in cultured pine cells associates with the cell cycle phase

The double-stranded short interfering RNA (siRNA) molecules can silence targeted genes through sequence-specific cleavage of the cognate RNA transcript. The rapid adoption of technologies based on this siRNA interference mechanism has been a widely used method to analyze gene function in plants, inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2006-06, Vol.224 (1), p.53-60, Article 53
Hauptverfasser: Tang, W, Newton, R.J, Weidner, D.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 1
container_start_page 53
container_title Planta
container_volume 224
creator Tang, W
Newton, R.J
Weidner, D.A
description The double-stranded short interfering RNA (siRNA) molecules can silence targeted genes through sequence-specific cleavage of the cognate RNA transcript. The rapid adoption of technologies based on this siRNA interference mechanism has been a widely used method to analyze gene function in plants, invertebrates, and mammalian systems. In order to understand the dynamics of siRNA-mediated gene inactivation during cell division, we have investigated the relationship between the cell cycle phase and the post-transcriptional gene silencing mediated by siRNA in gfp transgenic Virginia pine (Pinus virginiana Mill.) cells. Among the different phases of the cell cycle, transgenic cells at the M phase gave 2-3 times lower gfp silencing than those at the G1, S, and G2 phases. The similar results of the siRNA-mediated gfp silencing were obtained in three transgenic cell lines. Differential gfp silencing induced by siRNA has been confirmed by northern blot, laser scanning microscopy, and siRNA analysis. These data suggested that siRNA-mediated gene inactivation is associated with the cell cycle phase in Virginia pine.
doi_str_mv 10.1007/s00425-005-0190-z
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68005508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23389411</jstor_id><sourcerecordid>23389411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-5a29c0f1b84e14b70abca2c0b2bcc3955e03a4452e7670da616109522c1278703</originalsourceid><addsrcrecordid>eNqFkctu1DAUhiMEokPhAVgAFhLsAufYTuwsq3KVKpCAri3H48x4lEkG2xFMn54TZUSlLmBh-fJ_5-LzF8VThDcIoN4mAMmrEoAWNlDe3CtWKAUvOUh9v1gB0BkaUZ0Vj1LaAZCo1MPiDGshUYFcFb_fha7z0Q852J5t_OBZCr0fXBg2LAzryfk1a48sbceY6SH7SPgsfvtyQXfmpj5PkaBDoFjn-z4xm9Logs0-sV8hb1neLgpzR9d7dtja5B8XDzrbJ__ktJ8X1x_e_7j8VF59_fj58uKqdFKIXFaWNw46bLX0KFsFtnWWO2h565xoqsqDsFJW3KtawdrWWCM0FecOudIKxHnxesl7iOPPyads9iHNzdjBj1MytabxVaD_C2JDM4NGEfjyDrgbpzjQJ4zmoFWNqiIIF8jFMaXoO3OIYW_j0SCY2TyzmGeoupnNMzcU8_yUeGr3fn0bcXKLgFcnwCZn-y5a8indckpzGsVcXN0p7kK2OYxDjjb0_2zh2RK5S3mMfzNzIXQjEUl_seidHY3dRKp-_Z0DCkDQEnUj_gDGUMY0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>820876175</pqid></control><display><type>article</type><title>Differential gene silencing induced by short interfering RNA in cultured pine cells associates with the cell cycle phase</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Tang, W ; Newton, R.J ; Weidner, D.A</creator><creatorcontrib>Tang, W ; Newton, R.J ; Weidner, D.A</creatorcontrib><description>The double-stranded short interfering RNA (siRNA) molecules can silence targeted genes through sequence-specific cleavage of the cognate RNA transcript. The rapid adoption of technologies based on this siRNA interference mechanism has been a widely used method to analyze gene function in plants, invertebrates, and mammalian systems. In order to understand the dynamics of siRNA-mediated gene inactivation during cell division, we have investigated the relationship between the cell cycle phase and the post-transcriptional gene silencing mediated by siRNA in gfp transgenic Virginia pine (Pinus virginiana Mill.) cells. Among the different phases of the cell cycle, transgenic cells at the M phase gave 2-3 times lower gfp silencing than those at the G1, S, and G2 phases. The similar results of the siRNA-mediated gfp silencing were obtained in three transgenic cell lines. Differential gfp silencing induced by siRNA has been confirmed by northern blot, laser scanning microscopy, and siRNA analysis. These data suggested that siRNA-mediated gene inactivation is associated with the cell cycle phase in Virginia pine.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-005-0190-z</identifier><identifier>PMID: 16341704</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin: Springer-Verlag</publisher><subject>Biological and medical sciences ; Cell culture techniques ; Cell cycle ; Cell Cycle - genetics ; Cell division ; Cell kinetics ; Cell lines ; Cell physiology ; Cells, Cultured ; Cultured cells ; double-stranded RNA ; Fundamental and applied biological sciences. Psychology ; Gene Dosage ; Gene silencing ; Genes ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Inactivation ; Microscopy, Confocal ; Pine trees ; Pinus - cytology ; Pinus - genetics ; Pinus - metabolism ; Pinus virginiana ; Plant cells ; Plant physiology and development ; Plants, Genetically Modified - cytology ; Plants, Genetically Modified - metabolism ; Proteins ; RNA ; RNA Interference ; RNA, Messenger - metabolism ; RNA, Small Interfering - analysis ; RNA, Small Interfering - metabolism ; Small interfering RNA ; Transgenic animals</subject><ispartof>Planta, 2006-06, Vol.224 (1), p.53-60, Article 53</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2006 INIST-CNRS</rights><rights>Springer-Verlag 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-5a29c0f1b84e14b70abca2c0b2bcc3955e03a4452e7670da616109522c1278703</citedby><cites>FETCH-LOGICAL-c433t-5a29c0f1b84e14b70abca2c0b2bcc3955e03a4452e7670da616109522c1278703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23389411$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23389411$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17824455$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16341704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, W</creatorcontrib><creatorcontrib>Newton, R.J</creatorcontrib><creatorcontrib>Weidner, D.A</creatorcontrib><title>Differential gene silencing induced by short interfering RNA in cultured pine cells associates with the cell cycle phase</title><title>Planta</title><addtitle>Planta</addtitle><description>The double-stranded short interfering RNA (siRNA) molecules can silence targeted genes through sequence-specific cleavage of the cognate RNA transcript. The rapid adoption of technologies based on this siRNA interference mechanism has been a widely used method to analyze gene function in plants, invertebrates, and mammalian systems. In order to understand the dynamics of siRNA-mediated gene inactivation during cell division, we have investigated the relationship between the cell cycle phase and the post-transcriptional gene silencing mediated by siRNA in gfp transgenic Virginia pine (Pinus virginiana Mill.) cells. Among the different phases of the cell cycle, transgenic cells at the M phase gave 2-3 times lower gfp silencing than those at the G1, S, and G2 phases. The similar results of the siRNA-mediated gfp silencing were obtained in three transgenic cell lines. Differential gfp silencing induced by siRNA has been confirmed by northern blot, laser scanning microscopy, and siRNA analysis. These data suggested that siRNA-mediated gene inactivation is associated with the cell cycle phase in Virginia pine.</description><subject>Biological and medical sciences</subject><subject>Cell culture techniques</subject><subject>Cell cycle</subject><subject>Cell Cycle - genetics</subject><subject>Cell division</subject><subject>Cell kinetics</subject><subject>Cell lines</subject><subject>Cell physiology</subject><subject>Cells, Cultured</subject><subject>Cultured cells</subject><subject>double-stranded RNA</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Dosage</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Inactivation</subject><subject>Microscopy, Confocal</subject><subject>Pine trees</subject><subject>Pinus - cytology</subject><subject>Pinus - genetics</subject><subject>Pinus - metabolism</subject><subject>Pinus virginiana</subject><subject>Plant cells</subject><subject>Plant physiology and development</subject><subject>Plants, Genetically Modified - cytology</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Proteins</subject><subject>RNA</subject><subject>RNA Interference</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Small Interfering - analysis</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Small interfering RNA</subject><subject>Transgenic animals</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkctu1DAUhiMEokPhAVgAFhLsAufYTuwsq3KVKpCAri3H48x4lEkG2xFMn54TZUSlLmBh-fJ_5-LzF8VThDcIoN4mAMmrEoAWNlDe3CtWKAUvOUh9v1gB0BkaUZ0Vj1LaAZCo1MPiDGshUYFcFb_fha7z0Q852J5t_OBZCr0fXBg2LAzryfk1a48sbceY6SH7SPgsfvtyQXfmpj5PkaBDoFjn-z4xm9Logs0-sV8hb1neLgpzR9d7dtja5B8XDzrbJ__ktJ8X1x_e_7j8VF59_fj58uKqdFKIXFaWNw46bLX0KFsFtnWWO2h565xoqsqDsFJW3KtawdrWWCM0FecOudIKxHnxesl7iOPPyads9iHNzdjBj1MytabxVaD_C2JDM4NGEfjyDrgbpzjQJ4zmoFWNqiIIF8jFMaXoO3OIYW_j0SCY2TyzmGeoupnNMzcU8_yUeGr3fn0bcXKLgFcnwCZn-y5a8indckpzGsVcXN0p7kK2OYxDjjb0_2zh2RK5S3mMfzNzIXQjEUl_seidHY3dRKp-_Z0DCkDQEnUj_gDGUMY0</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Tang, W</creator><creator>Newton, R.J</creator><creator>Weidner, D.A</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060601</creationdate><title>Differential gene silencing induced by short interfering RNA in cultured pine cells associates with the cell cycle phase</title><author>Tang, W ; Newton, R.J ; Weidner, D.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-5a29c0f1b84e14b70abca2c0b2bcc3955e03a4452e7670da616109522c1278703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biological and medical sciences</topic><topic>Cell culture techniques</topic><topic>Cell cycle</topic><topic>Cell Cycle - genetics</topic><topic>Cell division</topic><topic>Cell kinetics</topic><topic>Cell lines</topic><topic>Cell physiology</topic><topic>Cells, Cultured</topic><topic>Cultured cells</topic><topic>double-stranded RNA</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Dosage</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Inactivation</topic><topic>Microscopy, Confocal</topic><topic>Pine trees</topic><topic>Pinus - cytology</topic><topic>Pinus - genetics</topic><topic>Pinus - metabolism</topic><topic>Pinus virginiana</topic><topic>Plant cells</topic><topic>Plant physiology and development</topic><topic>Plants, Genetically Modified - cytology</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Proteins</topic><topic>RNA</topic><topic>RNA Interference</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Small Interfering - analysis</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Small interfering RNA</topic><topic>Transgenic animals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, W</creatorcontrib><creatorcontrib>Newton, R.J</creatorcontrib><creatorcontrib>Weidner, D.A</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, W</au><au>Newton, R.J</au><au>Weidner, D.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential gene silencing induced by short interfering RNA in cultured pine cells associates with the cell cycle phase</atitle><jtitle>Planta</jtitle><addtitle>Planta</addtitle><date>2006-06-01</date><risdate>2006</risdate><volume>224</volume><issue>1</issue><spage>53</spage><epage>60</epage><pages>53-60</pages><artnum>53</artnum><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>The double-stranded short interfering RNA (siRNA) molecules can silence targeted genes through sequence-specific cleavage of the cognate RNA transcript. The rapid adoption of technologies based on this siRNA interference mechanism has been a widely used method to analyze gene function in plants, invertebrates, and mammalian systems. In order to understand the dynamics of siRNA-mediated gene inactivation during cell division, we have investigated the relationship between the cell cycle phase and the post-transcriptional gene silencing mediated by siRNA in gfp transgenic Virginia pine (Pinus virginiana Mill.) cells. Among the different phases of the cell cycle, transgenic cells at the M phase gave 2-3 times lower gfp silencing than those at the G1, S, and G2 phases. The similar results of the siRNA-mediated gfp silencing were obtained in three transgenic cell lines. Differential gfp silencing induced by siRNA has been confirmed by northern blot, laser scanning microscopy, and siRNA analysis. These data suggested that siRNA-mediated gene inactivation is associated with the cell cycle phase in Virginia pine.</abstract><cop>Berlin</cop><pub>Springer-Verlag</pub><pmid>16341704</pmid><doi>10.1007/s00425-005-0190-z</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2006-06, Vol.224 (1), p.53-60, Article 53
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_68005508
source MEDLINE; SpringerNature Journals; JSTOR Archive Collection A-Z Listing
subjects Biological and medical sciences
Cell culture techniques
Cell cycle
Cell Cycle - genetics
Cell division
Cell kinetics
Cell lines
Cell physiology
Cells, Cultured
Cultured cells
double-stranded RNA
Fundamental and applied biological sciences. Psychology
Gene Dosage
Gene silencing
Genes
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Inactivation
Microscopy, Confocal
Pine trees
Pinus - cytology
Pinus - genetics
Pinus - metabolism
Pinus virginiana
Plant cells
Plant physiology and development
Plants, Genetically Modified - cytology
Plants, Genetically Modified - metabolism
Proteins
RNA
RNA Interference
RNA, Messenger - metabolism
RNA, Small Interfering - analysis
RNA, Small Interfering - metabolism
Small interfering RNA
Transgenic animals
title Differential gene silencing induced by short interfering RNA in cultured pine cells associates with the cell cycle phase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A45%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20gene%20silencing%20induced%20by%20short%20interfering%20RNA%20in%20cultured%20pine%20cells%20associates%20with%20the%20cell%20cycle%20phase&rft.jtitle=Planta&rft.au=Tang,%20W&rft.date=2006-06-01&rft.volume=224&rft.issue=1&rft.spage=53&rft.epage=60&rft.pages=53-60&rft.artnum=53&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/s00425-005-0190-z&rft_dat=%3Cjstor_proqu%3E23389411%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=820876175&rft_id=info:pmid/16341704&rft_jstor_id=23389411&rfr_iscdi=true