Emotion recognition in human–computer interaction

In this paper, we outline the approach we have developed to construct an emotion-recognising system. It is based on guidance from psychological studies of emotion, as well as from the nature of emotion in its interaction with attention. A neural network architecture is constructed to be able to hand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2005-05, Vol.18 (4), p.389-405
Hauptverfasser: Fragopanagos, N., Taylor, J.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 405
container_issue 4
container_start_page 389
container_title Neural networks
container_volume 18
creator Fragopanagos, N.
Taylor, J.G.
description In this paper, we outline the approach we have developed to construct an emotion-recognising system. It is based on guidance from psychological studies of emotion, as well as from the nature of emotion in its interaction with attention. A neural network architecture is constructed to be able to handle the fusion of different modalities (facial features, prosody and lexical content in speech). Results from the network are given and their implications discussed, as are implications for future direction for the research.
doi_str_mv 10.1016/j.neunet.2005.03.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68002813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608005000390</els_id><sourcerecordid>19377707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-2575b479bf44cbf9fece66621005dca321ceba94e03e1295c9854f3231eb5d4b3</originalsourceid><addsrcrecordid>eNqFkM1KxDAQx4Mo7rr6BiJ78tY6-WqSiyCyfsCCFz2HNp1qlm27Nq3gzXfwDX0Ss3bBm14yIfOb_4QfIacUUgo0u1ilDQ4N9ikDkCnwFCDbI1OqlUmY0myfTEEbnmSgYUKOQlhBJLTgh2RCpWFUazUlfFG3vW-beYeufW78z90385ehzpuvj0_X1puhxy6-xTN32_4xOajydcCTXZ2Rp5vF4_Vdsny4vb--WiZOSNUnTCpZCGWKSghXVKZCh1mWMRr_W7qcM-qwyI1A4EiZkc5oKSrOOMVClqLgM3I-5m669nXA0NvaB4frdd5gOwSbaQCmKf8XpIYrpUBFUIyg69oQOqzspvN13r1bCnZr1a7saNVurVrgNjqLY2e7_KGosfwd2mmMwOUIYNTx5rGzwXlsHJY-eu1t2fq_N3wDITSLaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19377707</pqid></control><display><type>article</type><title>Emotion recognition in human–computer interaction</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fragopanagos, N. ; Taylor, J.G.</creator><creatorcontrib>Fragopanagos, N. ; Taylor, J.G.</creatorcontrib><description>In this paper, we outline the approach we have developed to construct an emotion-recognising system. It is based on guidance from psychological studies of emotion, as well as from the nature of emotion in its interaction with attention. A neural network architecture is constructed to be able to handle the fusion of different modalities (facial features, prosody and lexical content in speech). Results from the network are given and their implications discussed, as are implications for future direction for the research.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2005.03.006</identifier><identifier>PMID: 15921887</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Attention - physiology ; Attention control ; Computers ; Emotion classification ; Emotion data sets ; Emotions ; Emotions - physiology ; Face feature analysis ; Facial Expression ; Feedback learning ; Humans ; Learning ; Lexical content ; Man-Machine Systems ; Neural Networks (Computer) ; Prosody ; Recognition (Psychology) - physiology ; Relaxation ; Sigma–pi neural networks ; User-Computer Interface</subject><ispartof>Neural networks, 2005-05, Vol.18 (4), p.389-405</ispartof><rights>2005 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-2575b479bf44cbf9fece66621005dca321ceba94e03e1295c9854f3231eb5d4b3</citedby><cites>FETCH-LOGICAL-c457t-2575b479bf44cbf9fece66621005dca321ceba94e03e1295c9854f3231eb5d4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2005.03.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15921887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fragopanagos, N.</creatorcontrib><creatorcontrib>Taylor, J.G.</creatorcontrib><title>Emotion recognition in human–computer interaction</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>In this paper, we outline the approach we have developed to construct an emotion-recognising system. It is based on guidance from psychological studies of emotion, as well as from the nature of emotion in its interaction with attention. A neural network architecture is constructed to be able to handle the fusion of different modalities (facial features, prosody and lexical content in speech). Results from the network are given and their implications discussed, as are implications for future direction for the research.</description><subject>Attention - physiology</subject><subject>Attention control</subject><subject>Computers</subject><subject>Emotion classification</subject><subject>Emotion data sets</subject><subject>Emotions</subject><subject>Emotions - physiology</subject><subject>Face feature analysis</subject><subject>Facial Expression</subject><subject>Feedback learning</subject><subject>Humans</subject><subject>Learning</subject><subject>Lexical content</subject><subject>Man-Machine Systems</subject><subject>Neural Networks (Computer)</subject><subject>Prosody</subject><subject>Recognition (Psychology) - physiology</subject><subject>Relaxation</subject><subject>Sigma–pi neural networks</subject><subject>User-Computer Interface</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1KxDAQx4Mo7rr6BiJ78tY6-WqSiyCyfsCCFz2HNp1qlm27Nq3gzXfwDX0Ss3bBm14yIfOb_4QfIacUUgo0u1ilDQ4N9ikDkCnwFCDbI1OqlUmY0myfTEEbnmSgYUKOQlhBJLTgh2RCpWFUazUlfFG3vW-beYeufW78z90385ehzpuvj0_X1puhxy6-xTN32_4xOajydcCTXZ2Rp5vF4_Vdsny4vb--WiZOSNUnTCpZCGWKSghXVKZCh1mWMRr_W7qcM-qwyI1A4EiZkc5oKSrOOMVClqLgM3I-5m669nXA0NvaB4frdd5gOwSbaQCmKf8XpIYrpUBFUIyg69oQOqzspvN13r1bCnZr1a7saNVurVrgNjqLY2e7_KGosfwd2mmMwOUIYNTx5rGzwXlsHJY-eu1t2fq_N3wDITSLaA</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Fragopanagos, N.</creator><creator>Taylor, J.G.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20050501</creationdate><title>Emotion recognition in human–computer interaction</title><author>Fragopanagos, N. ; Taylor, J.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-2575b479bf44cbf9fece66621005dca321ceba94e03e1295c9854f3231eb5d4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Attention - physiology</topic><topic>Attention control</topic><topic>Computers</topic><topic>Emotion classification</topic><topic>Emotion data sets</topic><topic>Emotions</topic><topic>Emotions - physiology</topic><topic>Face feature analysis</topic><topic>Facial Expression</topic><topic>Feedback learning</topic><topic>Humans</topic><topic>Learning</topic><topic>Lexical content</topic><topic>Man-Machine Systems</topic><topic>Neural Networks (Computer)</topic><topic>Prosody</topic><topic>Recognition (Psychology) - physiology</topic><topic>Relaxation</topic><topic>Sigma–pi neural networks</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fragopanagos, N.</creatorcontrib><creatorcontrib>Taylor, J.G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fragopanagos, N.</au><au>Taylor, J.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emotion recognition in human–computer interaction</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2005-05-01</date><risdate>2005</risdate><volume>18</volume><issue>4</issue><spage>389</spage><epage>405</epage><pages>389-405</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>In this paper, we outline the approach we have developed to construct an emotion-recognising system. It is based on guidance from psychological studies of emotion, as well as from the nature of emotion in its interaction with attention. A neural network architecture is constructed to be able to handle the fusion of different modalities (facial features, prosody and lexical content in speech). Results from the network are given and their implications discussed, as are implications for future direction for the research.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>15921887</pmid><doi>10.1016/j.neunet.2005.03.006</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2005-05, Vol.18 (4), p.389-405
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_68002813
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Attention - physiology
Attention control
Computers
Emotion classification
Emotion data sets
Emotions
Emotions - physiology
Face feature analysis
Facial Expression
Feedback learning
Humans
Learning
Lexical content
Man-Machine Systems
Neural Networks (Computer)
Prosody
Recognition (Psychology) - physiology
Relaxation
Sigma–pi neural networks
User-Computer Interface
title Emotion recognition in human–computer interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A48%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emotion%20recognition%20in%20human%E2%80%93computer%20interaction&rft.jtitle=Neural%20networks&rft.au=Fragopanagos,%20N.&rft.date=2005-05-01&rft.volume=18&rft.issue=4&rft.spage=389&rft.epage=405&rft.pages=389-405&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2005.03.006&rft_dat=%3Cproquest_cross%3E19377707%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19377707&rft_id=info:pmid/15921887&rft_els_id=S0893608005000390&rfr_iscdi=true