Emotion recognition in human–computer interaction
In this paper, we outline the approach we have developed to construct an emotion-recognising system. It is based on guidance from psychological studies of emotion, as well as from the nature of emotion in its interaction with attention. A neural network architecture is constructed to be able to hand...
Gespeichert in:
Veröffentlicht in: | Neural networks 2005-05, Vol.18 (4), p.389-405 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 405 |
---|---|
container_issue | 4 |
container_start_page | 389 |
container_title | Neural networks |
container_volume | 18 |
creator | Fragopanagos, N. Taylor, J.G. |
description | In this paper, we outline the approach we have developed to construct an emotion-recognising system. It is based on guidance from psychological studies of emotion, as well as from the nature of emotion in its interaction with attention. A neural network architecture is constructed to be able to handle the fusion of different modalities (facial features, prosody and lexical content in speech). Results from the network are given and their implications discussed, as are implications for future direction for the research. |
doi_str_mv | 10.1016/j.neunet.2005.03.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68002813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608005000390</els_id><sourcerecordid>19377707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-2575b479bf44cbf9fece66621005dca321ceba94e03e1295c9854f3231eb5d4b3</originalsourceid><addsrcrecordid>eNqFkM1KxDAQx4Mo7rr6BiJ78tY6-WqSiyCyfsCCFz2HNp1qlm27Nq3gzXfwDX0Ss3bBm14yIfOb_4QfIacUUgo0u1ilDQ4N9ikDkCnwFCDbI1OqlUmY0myfTEEbnmSgYUKOQlhBJLTgh2RCpWFUazUlfFG3vW-beYeufW78z90385ehzpuvj0_X1puhxy6-xTN32_4xOajydcCTXZ2Rp5vF4_Vdsny4vb--WiZOSNUnTCpZCGWKSghXVKZCh1mWMRr_W7qcM-qwyI1A4EiZkc5oKSrOOMVClqLgM3I-5m669nXA0NvaB4frdd5gOwSbaQCmKf8XpIYrpUBFUIyg69oQOqzspvN13r1bCnZr1a7saNVurVrgNjqLY2e7_KGosfwd2mmMwOUIYNTx5rGzwXlsHJY-eu1t2fq_N3wDITSLaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19377707</pqid></control><display><type>article</type><title>Emotion recognition in human–computer interaction</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fragopanagos, N. ; Taylor, J.G.</creator><creatorcontrib>Fragopanagos, N. ; Taylor, J.G.</creatorcontrib><description>In this paper, we outline the approach we have developed to construct an emotion-recognising system. It is based on guidance from psychological studies of emotion, as well as from the nature of emotion in its interaction with attention. A neural network architecture is constructed to be able to handle the fusion of different modalities (facial features, prosody and lexical content in speech). Results from the network are given and their implications discussed, as are implications for future direction for the research.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2005.03.006</identifier><identifier>PMID: 15921887</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Attention - physiology ; Attention control ; Computers ; Emotion classification ; Emotion data sets ; Emotions ; Emotions - physiology ; Face feature analysis ; Facial Expression ; Feedback learning ; Humans ; Learning ; Lexical content ; Man-Machine Systems ; Neural Networks (Computer) ; Prosody ; Recognition (Psychology) - physiology ; Relaxation ; Sigma–pi neural networks ; User-Computer Interface</subject><ispartof>Neural networks, 2005-05, Vol.18 (4), p.389-405</ispartof><rights>2005 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-2575b479bf44cbf9fece66621005dca321ceba94e03e1295c9854f3231eb5d4b3</citedby><cites>FETCH-LOGICAL-c457t-2575b479bf44cbf9fece66621005dca321ceba94e03e1295c9854f3231eb5d4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2005.03.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15921887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fragopanagos, N.</creatorcontrib><creatorcontrib>Taylor, J.G.</creatorcontrib><title>Emotion recognition in human–computer interaction</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>In this paper, we outline the approach we have developed to construct an emotion-recognising system. It is based on guidance from psychological studies of emotion, as well as from the nature of emotion in its interaction with attention. A neural network architecture is constructed to be able to handle the fusion of different modalities (facial features, prosody and lexical content in speech). Results from the network are given and their implications discussed, as are implications for future direction for the research.</description><subject>Attention - physiology</subject><subject>Attention control</subject><subject>Computers</subject><subject>Emotion classification</subject><subject>Emotion data sets</subject><subject>Emotions</subject><subject>Emotions - physiology</subject><subject>Face feature analysis</subject><subject>Facial Expression</subject><subject>Feedback learning</subject><subject>Humans</subject><subject>Learning</subject><subject>Lexical content</subject><subject>Man-Machine Systems</subject><subject>Neural Networks (Computer)</subject><subject>Prosody</subject><subject>Recognition (Psychology) - physiology</subject><subject>Relaxation</subject><subject>Sigma–pi neural networks</subject><subject>User-Computer Interface</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1KxDAQx4Mo7rr6BiJ78tY6-WqSiyCyfsCCFz2HNp1qlm27Nq3gzXfwDX0Ss3bBm14yIfOb_4QfIacUUgo0u1ilDQ4N9ikDkCnwFCDbI1OqlUmY0myfTEEbnmSgYUKOQlhBJLTgh2RCpWFUazUlfFG3vW-beYeufW78z90385ehzpuvj0_X1puhxy6-xTN32_4xOajydcCTXZ2Rp5vF4_Vdsny4vb--WiZOSNUnTCpZCGWKSghXVKZCh1mWMRr_W7qcM-qwyI1A4EiZkc5oKSrOOMVClqLgM3I-5m669nXA0NvaB4frdd5gOwSbaQCmKf8XpIYrpUBFUIyg69oQOqzspvN13r1bCnZr1a7saNVurVrgNjqLY2e7_KGosfwd2mmMwOUIYNTx5rGzwXlsHJY-eu1t2fq_N3wDITSLaA</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Fragopanagos, N.</creator><creator>Taylor, J.G.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20050501</creationdate><title>Emotion recognition in human–computer interaction</title><author>Fragopanagos, N. ; Taylor, J.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-2575b479bf44cbf9fece66621005dca321ceba94e03e1295c9854f3231eb5d4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Attention - physiology</topic><topic>Attention control</topic><topic>Computers</topic><topic>Emotion classification</topic><topic>Emotion data sets</topic><topic>Emotions</topic><topic>Emotions - physiology</topic><topic>Face feature analysis</topic><topic>Facial Expression</topic><topic>Feedback learning</topic><topic>Humans</topic><topic>Learning</topic><topic>Lexical content</topic><topic>Man-Machine Systems</topic><topic>Neural Networks (Computer)</topic><topic>Prosody</topic><topic>Recognition (Psychology) - physiology</topic><topic>Relaxation</topic><topic>Sigma–pi neural networks</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fragopanagos, N.</creatorcontrib><creatorcontrib>Taylor, J.G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fragopanagos, N.</au><au>Taylor, J.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emotion recognition in human–computer interaction</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2005-05-01</date><risdate>2005</risdate><volume>18</volume><issue>4</issue><spage>389</spage><epage>405</epage><pages>389-405</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>In this paper, we outline the approach we have developed to construct an emotion-recognising system. It is based on guidance from psychological studies of emotion, as well as from the nature of emotion in its interaction with attention. A neural network architecture is constructed to be able to handle the fusion of different modalities (facial features, prosody and lexical content in speech). Results from the network are given and their implications discussed, as are implications for future direction for the research.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>15921887</pmid><doi>10.1016/j.neunet.2005.03.006</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2005-05, Vol.18 (4), p.389-405 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_68002813 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Attention - physiology Attention control Computers Emotion classification Emotion data sets Emotions Emotions - physiology Face feature analysis Facial Expression Feedback learning Humans Learning Lexical content Man-Machine Systems Neural Networks (Computer) Prosody Recognition (Psychology) - physiology Relaxation Sigma–pi neural networks User-Computer Interface |
title | Emotion recognition in human–computer interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A48%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emotion%20recognition%20in%20human%E2%80%93computer%20interaction&rft.jtitle=Neural%20networks&rft.au=Fragopanagos,%20N.&rft.date=2005-05-01&rft.volume=18&rft.issue=4&rft.spage=389&rft.epage=405&rft.pages=389-405&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2005.03.006&rft_dat=%3Cproquest_cross%3E19377707%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19377707&rft_id=info:pmid/15921887&rft_els_id=S0893608005000390&rfr_iscdi=true |