Targeted and proximity-dependent promiscuous protein biotinylation by a mutant Escherichia coli biotin protein ligase
A method for general protein biotinylation by enzymatic means has been developed. A mutant form (R118G) of the biotin protein ligase (BirA) of Escherichia coli is used and biotinylation is thought to proceed by chemical acylation of protein lysine side chains by biotinoyl-5′-AMP released from the mu...
Gespeichert in:
Veröffentlicht in: | The Journal of nutritional biochemistry 2005-07, Vol.16 (7), p.416-418 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 418 |
---|---|
container_issue | 7 |
container_start_page | 416 |
container_title | The Journal of nutritional biochemistry |
container_volume | 16 |
creator | Cronan, John E. |
description | A method for general protein biotinylation by enzymatic means has been developed. A mutant form (R118G) of the biotin protein ligase (BirA) of
Escherichia coli is used and biotinylation is thought to proceed by chemical acylation of protein lysine side chains by biotinoyl-5′-AMP released from the mutant protein. Bovine serum albumin, chloramphenicol acetyltransferase, immunoglobulin chains and RNAse A as well as a large number of
E. coli proteins have been biotinylated. The biotinylation reaction is proximity dependent in that the extent of biotinylation is much greater when the ligase is coupled to the acceptor protein than when the acceptor is free in solution. This is presumably due to rapid hydrolysis of the acylation agent, biotinoyl-5′-AMP. Therefore, when the mutant ligase is attached to one partner involved in a protein–protein interaction, it can be used to specifically tag the other partner with biotin, thereby permitting facile detection and recovery of the proteins by existing avidin/streptavidin technology. |
doi_str_mv | 10.1016/j.jnutbio.2005.03.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68002550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955286305000902</els_id><sourcerecordid>68002550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-5ca79721576a87ad53180bc214b000f9895dc8747612833c1cad1238568ff1223</originalsourceid><addsrcrecordid>eNqFkE1v3CAQhlGVqtmm_QlNferN7gDG4FMUrdIPKVIPTc6IhfGGlT82gKvsvy_WWs2xJz70zLwzDyGfKFQUaPP1UB3GOe38VDEAUQGvgMo3ZEOV5GWtanlBNtAKUTLV8EvyPsYDALBaNO_IJRVtyxpFN2R-MGGPCV1hRlccw_TiB59OpcMjjg7HtPwNPtp5muNyT-jHIscmP556k_yUX6fCFMOcTKbvon3C4O2TN4Wder-i_yp7vzcRP5C3nekjflzPK_L47e5h-6O8__X95_b2vrS14KkU1shWMipkY5Q0TnCqYGcZrXd5l65VrXBWyVo2lCnOLbXGUcaVaFTXUcb4Ffly7pvjn2eMSS-rYN-bEfM-ulFZiRCQQXEGbZhiDNjpY_CDCSdNQS--9UGvvvXiWwPX2Xeuu14D5t2A7rVqFZyBz2egM5M2--CjfvzNgHLIXUUNC3FzJjCL-OMx6Gg9jhadD2iTdpP_zxB_ARr9nxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68002550</pqid></control><display><type>article</type><title>Targeted and proximity-dependent promiscuous protein biotinylation by a mutant Escherichia coli biotin protein ligase</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Cronan, John E.</creator><creatorcontrib>Cronan, John E.</creatorcontrib><description>A method for general protein biotinylation by enzymatic means has been developed. A mutant form (R118G) of the biotin protein ligase (BirA) of
Escherichia coli is used and biotinylation is thought to proceed by chemical acylation of protein lysine side chains by biotinoyl-5′-AMP released from the mutant protein. Bovine serum albumin, chloramphenicol acetyltransferase, immunoglobulin chains and RNAse A as well as a large number of
E. coli proteins have been biotinylated. The biotinylation reaction is proximity dependent in that the extent of biotinylation is much greater when the ligase is coupled to the acceptor protein than when the acceptor is free in solution. This is presumably due to rapid hydrolysis of the acylation agent, biotinoyl-5′-AMP. Therefore, when the mutant ligase is attached to one partner involved in a protein–protein interaction, it can be used to specifically tag the other partner with biotin, thereby permitting facile detection and recovery of the proteins by existing avidin/streptavidin technology.</description><identifier>ISSN: 0955-2863</identifier><identifier>EISSN: 1873-4847</identifier><identifier>DOI: 10.1016/j.jnutbio.2005.03.017</identifier><identifier>PMID: 15992681</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Monophosphate - analogs & derivatives ; Adenosine Monophosphate - chemistry ; Adenosine Monophosphate - metabolism ; aminoacylation ; bacterial proteins ; binding proteins ; biotin ; Biotin - analogs & derivatives ; Biotin - chemistry ; Biotin - metabolism ; Carbon-Nitrogen Ligases - genetics ; Carbon-Nitrogen Ligases - metabolism ; cell physiology ; Chloramphenicol O-Acetyltransferase - chemistry ; Chloramphenicol O-Acetyltransferase - metabolism ; enzymatic hydrolysis ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Immunoglobulins - chemistry ; Immunoglobulins - metabolism ; ligases ; Lysine - metabolism ; mutants ; Mutation ; Protein Engineering - methods ; protein-protein interactions ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Ribonuclease, Pancreatic - chemistry ; Ribonuclease, Pancreatic - metabolism ; Serum Albumin, Bovine - chemistry ; Serum Albumin, Bovine - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>The Journal of nutritional biochemistry, 2005-07, Vol.16 (7), p.416-418</ispartof><rights>2005 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-5ca79721576a87ad53180bc214b000f9895dc8747612833c1cad1238568ff1223</citedby><cites>FETCH-LOGICAL-c453t-5ca79721576a87ad53180bc214b000f9895dc8747612833c1cad1238568ff1223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnutbio.2005.03.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15992681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cronan, John E.</creatorcontrib><title>Targeted and proximity-dependent promiscuous protein biotinylation by a mutant Escherichia coli biotin protein ligase</title><title>The Journal of nutritional biochemistry</title><addtitle>J Nutr Biochem</addtitle><description>A method for general protein biotinylation by enzymatic means has been developed. A mutant form (R118G) of the biotin protein ligase (BirA) of
Escherichia coli is used and biotinylation is thought to proceed by chemical acylation of protein lysine side chains by biotinoyl-5′-AMP released from the mutant protein. Bovine serum albumin, chloramphenicol acetyltransferase, immunoglobulin chains and RNAse A as well as a large number of
E. coli proteins have been biotinylated. The biotinylation reaction is proximity dependent in that the extent of biotinylation is much greater when the ligase is coupled to the acceptor protein than when the acceptor is free in solution. This is presumably due to rapid hydrolysis of the acylation agent, biotinoyl-5′-AMP. Therefore, when the mutant ligase is attached to one partner involved in a protein–protein interaction, it can be used to specifically tag the other partner with biotin, thereby permitting facile detection and recovery of the proteins by existing avidin/streptavidin technology.</description><subject>Adenosine Monophosphate - analogs & derivatives</subject><subject>Adenosine Monophosphate - chemistry</subject><subject>Adenosine Monophosphate - metabolism</subject><subject>aminoacylation</subject><subject>bacterial proteins</subject><subject>binding proteins</subject><subject>biotin</subject><subject>Biotin - analogs & derivatives</subject><subject>Biotin - chemistry</subject><subject>Biotin - metabolism</subject><subject>Carbon-Nitrogen Ligases - genetics</subject><subject>Carbon-Nitrogen Ligases - metabolism</subject><subject>cell physiology</subject><subject>Chloramphenicol O-Acetyltransferase - chemistry</subject><subject>Chloramphenicol O-Acetyltransferase - metabolism</subject><subject>enzymatic hydrolysis</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Immunoglobulins - chemistry</subject><subject>Immunoglobulins - metabolism</subject><subject>ligases</subject><subject>Lysine - metabolism</subject><subject>mutants</subject><subject>Mutation</subject><subject>Protein Engineering - methods</subject><subject>protein-protein interactions</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Ribonuclease, Pancreatic - chemistry</subject><subject>Ribonuclease, Pancreatic - metabolism</subject><subject>Serum Albumin, Bovine - chemistry</subject><subject>Serum Albumin, Bovine - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>0955-2863</issn><issn>1873-4847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v3CAQhlGVqtmm_QlNferN7gDG4FMUrdIPKVIPTc6IhfGGlT82gKvsvy_WWs2xJz70zLwzDyGfKFQUaPP1UB3GOe38VDEAUQGvgMo3ZEOV5GWtanlBNtAKUTLV8EvyPsYDALBaNO_IJRVtyxpFN2R-MGGPCV1hRlccw_TiB59OpcMjjg7HtPwNPtp5muNyT-jHIscmP556k_yUX6fCFMOcTKbvon3C4O2TN4Wder-i_yp7vzcRP5C3nekjflzPK_L47e5h-6O8__X95_b2vrS14KkU1shWMipkY5Q0TnCqYGcZrXd5l65VrXBWyVo2lCnOLbXGUcaVaFTXUcb4Ffly7pvjn2eMSS-rYN-bEfM-ulFZiRCQQXEGbZhiDNjpY_CDCSdNQS--9UGvvvXiWwPX2Xeuu14D5t2A7rVqFZyBz2egM5M2--CjfvzNgHLIXUUNC3FzJjCL-OMx6Gg9jhadD2iTdpP_zxB_ARr9nxw</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Cronan, John E.</creator><general>Elsevier Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050701</creationdate><title>Targeted and proximity-dependent promiscuous protein biotinylation by a mutant Escherichia coli biotin protein ligase</title><author>Cronan, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-5ca79721576a87ad53180bc214b000f9895dc8747612833c1cad1238568ff1223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adenosine Monophosphate - analogs & derivatives</topic><topic>Adenosine Monophosphate - chemistry</topic><topic>Adenosine Monophosphate - metabolism</topic><topic>aminoacylation</topic><topic>bacterial proteins</topic><topic>binding proteins</topic><topic>biotin</topic><topic>Biotin - analogs & derivatives</topic><topic>Biotin - chemistry</topic><topic>Biotin - metabolism</topic><topic>Carbon-Nitrogen Ligases - genetics</topic><topic>Carbon-Nitrogen Ligases - metabolism</topic><topic>cell physiology</topic><topic>Chloramphenicol O-Acetyltransferase - chemistry</topic><topic>Chloramphenicol O-Acetyltransferase - metabolism</topic><topic>enzymatic hydrolysis</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Immunoglobulins - chemistry</topic><topic>Immunoglobulins - metabolism</topic><topic>ligases</topic><topic>Lysine - metabolism</topic><topic>mutants</topic><topic>Mutation</topic><topic>Protein Engineering - methods</topic><topic>protein-protein interactions</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Ribonuclease, Pancreatic - chemistry</topic><topic>Ribonuclease, Pancreatic - metabolism</topic><topic>Serum Albumin, Bovine - chemistry</topic><topic>Serum Albumin, Bovine - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cronan, John E.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of nutritional biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cronan, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted and proximity-dependent promiscuous protein biotinylation by a mutant Escherichia coli biotin protein ligase</atitle><jtitle>The Journal of nutritional biochemistry</jtitle><addtitle>J Nutr Biochem</addtitle><date>2005-07-01</date><risdate>2005</risdate><volume>16</volume><issue>7</issue><spage>416</spage><epage>418</epage><pages>416-418</pages><issn>0955-2863</issn><eissn>1873-4847</eissn><abstract>A method for general protein biotinylation by enzymatic means has been developed. A mutant form (R118G) of the biotin protein ligase (BirA) of
Escherichia coli is used and biotinylation is thought to proceed by chemical acylation of protein lysine side chains by biotinoyl-5′-AMP released from the mutant protein. Bovine serum albumin, chloramphenicol acetyltransferase, immunoglobulin chains and RNAse A as well as a large number of
E. coli proteins have been biotinylated. The biotinylation reaction is proximity dependent in that the extent of biotinylation is much greater when the ligase is coupled to the acceptor protein than when the acceptor is free in solution. This is presumably due to rapid hydrolysis of the acylation agent, biotinoyl-5′-AMP. Therefore, when the mutant ligase is attached to one partner involved in a protein–protein interaction, it can be used to specifically tag the other partner with biotin, thereby permitting facile detection and recovery of the proteins by existing avidin/streptavidin technology.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15992681</pmid><doi>10.1016/j.jnutbio.2005.03.017</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0955-2863 |
ispartof | The Journal of nutritional biochemistry, 2005-07, Vol.16 (7), p.416-418 |
issn | 0955-2863 1873-4847 |
language | eng |
recordid | cdi_proquest_miscellaneous_68002550 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Adenosine Monophosphate - analogs & derivatives Adenosine Monophosphate - chemistry Adenosine Monophosphate - metabolism aminoacylation bacterial proteins binding proteins biotin Biotin - analogs & derivatives Biotin - chemistry Biotin - metabolism Carbon-Nitrogen Ligases - genetics Carbon-Nitrogen Ligases - metabolism cell physiology Chloramphenicol O-Acetyltransferase - chemistry Chloramphenicol O-Acetyltransferase - metabolism enzymatic hydrolysis Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Immunoglobulins - chemistry Immunoglobulins - metabolism ligases Lysine - metabolism mutants Mutation Protein Engineering - methods protein-protein interactions Repressor Proteins - genetics Repressor Proteins - metabolism Ribonuclease, Pancreatic - chemistry Ribonuclease, Pancreatic - metabolism Serum Albumin, Bovine - chemistry Serum Albumin, Bovine - metabolism Transcription Factors - genetics Transcription Factors - metabolism |
title | Targeted and proximity-dependent promiscuous protein biotinylation by a mutant Escherichia coli biotin protein ligase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20and%20proximity-dependent%20promiscuous%20protein%20biotinylation%20by%20a%20mutant%20Escherichia%20coli%20biotin%20protein%20ligase&rft.jtitle=The%20Journal%20of%20nutritional%20biochemistry&rft.au=Cronan,%20John%20E.&rft.date=2005-07-01&rft.volume=16&rft.issue=7&rft.spage=416&rft.epage=418&rft.pages=416-418&rft.issn=0955-2863&rft.eissn=1873-4847&rft_id=info:doi/10.1016/j.jnutbio.2005.03.017&rft_dat=%3Cproquest_cross%3E68002550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68002550&rft_id=info:pmid/15992681&rft_els_id=S0955286305000902&rfr_iscdi=true |