Making forecasts for chaotic physical processes
Making a prediction for a chaotic physical process involves specifying the probability associated with each possible outcome. Ensembles of solutions are frequently used to estimate this probability distribution. However, for a typical chaotic physical system and model of that system, no solution of...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2006-04, Vol.96 (14), p.144102-144102, Article 144102 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 144102 |
---|---|
container_issue | 14 |
container_start_page | 144102 |
container_title | Physical review letters |
container_volume | 96 |
creator | Danforth, Christopher M Yorke, James A |
description | Making a prediction for a chaotic physical process involves specifying the probability associated with each possible outcome. Ensembles of solutions are frequently used to estimate this probability distribution. However, for a typical chaotic physical system and model of that system, no solution of remains close to for all time. We propose an alternative. This Letter shows how to inflate or systematically perturb the ensemble of solutions of so that some ensemble member remains close to for orders of magnitude longer than unperturbed solutions of . This is true even when the perturbations are significantly smaller than the model error. |
doi_str_mv | 10.1103/physrevlett.96.144102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68001886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68001886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-34c5b08ddb05abbae2b5bda5b93035a6a9f7b84a3409fb7a20b01ed1c9c91ff93</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EoqXwCaCs2CWdiRM7XqKKl1QEQrC2xo5NA2lT4rRS_x5XrcRqZnEfuoexa4QMEfh0vdiF3m1bNwyZEhkWBUJ-wsYIUqUSsThlYwCOqQKQI3YRwjcAYC6qczZCITGPwjGbvtBPs_pKfNc7S2EI-y-xC-qGxib7ksZSm6z7zroQXLhkZ57a4K6Od8I-H-4_Zk_p_PXxeXY3Ty2XfEh5YUsDVV0bKMkYcrkpTU2lURx4SYKUl6YqiBegvJGUgwF0NVplFXqv-ITdHnJj8-_GhUEvm2Bd29LKdZugRRXHVJWIwvIgtH0XIhGv132zpH6nEfSelH6LI97ddh5JaSX0gVT03RwLNmbp6n_XEQ3_A4MaaH4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68001886</pqid></control><display><type>article</type><title>Making forecasts for chaotic physical processes</title><source>American Physical Society Journals</source><creator>Danforth, Christopher M ; Yorke, James A</creator><creatorcontrib>Danforth, Christopher M ; Yorke, James A</creatorcontrib><description>Making a prediction for a chaotic physical process involves specifying the probability associated with each possible outcome. Ensembles of solutions are frequently used to estimate this probability distribution. However, for a typical chaotic physical system and model of that system, no solution of remains close to for all time. We propose an alternative. This Letter shows how to inflate or systematically perturb the ensemble of solutions of so that some ensemble member remains close to for orders of magnitude longer than unperturbed solutions of . This is true even when the perturbations are significantly smaller than the model error.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.96.144102</identifier><identifier>PMID: 16712079</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2006-04, Vol.96 (14), p.144102-144102, Article 144102</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-34c5b08ddb05abbae2b5bda5b93035a6a9f7b84a3409fb7a20b01ed1c9c91ff93</citedby><cites>FETCH-LOGICAL-c373t-34c5b08ddb05abbae2b5bda5b93035a6a9f7b84a3409fb7a20b01ed1c9c91ff93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16712079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Danforth, Christopher M</creatorcontrib><creatorcontrib>Yorke, James A</creatorcontrib><title>Making forecasts for chaotic physical processes</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Making a prediction for a chaotic physical process involves specifying the probability associated with each possible outcome. Ensembles of solutions are frequently used to estimate this probability distribution. However, for a typical chaotic physical system and model of that system, no solution of remains close to for all time. We propose an alternative. This Letter shows how to inflate or systematically perturb the ensemble of solutions of so that some ensemble member remains close to for orders of magnitude longer than unperturbed solutions of . This is true even when the perturbations are significantly smaller than the model error.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAQRS0EoqXwCaCs2CWdiRM7XqKKl1QEQrC2xo5NA2lT4rRS_x5XrcRqZnEfuoexa4QMEfh0vdiF3m1bNwyZEhkWBUJ-wsYIUqUSsThlYwCOqQKQI3YRwjcAYC6qczZCITGPwjGbvtBPs_pKfNc7S2EI-y-xC-qGxib7ksZSm6z7zroQXLhkZ57a4K6Od8I-H-4_Zk_p_PXxeXY3Ty2XfEh5YUsDVV0bKMkYcrkpTU2lURx4SYKUl6YqiBegvJGUgwF0NVplFXqv-ITdHnJj8-_GhUEvm2Bd29LKdZugRRXHVJWIwvIgtH0XIhGv132zpH6nEfSelH6LI97ddh5JaSX0gVT03RwLNmbp6n_XEQ3_A4MaaH4</recordid><startdate>20060414</startdate><enddate>20060414</enddate><creator>Danforth, Christopher M</creator><creator>Yorke, James A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060414</creationdate><title>Making forecasts for chaotic physical processes</title><author>Danforth, Christopher M ; Yorke, James A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-34c5b08ddb05abbae2b5bda5b93035a6a9f7b84a3409fb7a20b01ed1c9c91ff93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danforth, Christopher M</creatorcontrib><creatorcontrib>Yorke, James A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danforth, Christopher M</au><au>Yorke, James A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Making forecasts for chaotic physical processes</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2006-04-14</date><risdate>2006</risdate><volume>96</volume><issue>14</issue><spage>144102</spage><epage>144102</epage><pages>144102-144102</pages><artnum>144102</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Making a prediction for a chaotic physical process involves specifying the probability associated with each possible outcome. Ensembles of solutions are frequently used to estimate this probability distribution. However, for a typical chaotic physical system and model of that system, no solution of remains close to for all time. We propose an alternative. This Letter shows how to inflate or systematically perturb the ensemble of solutions of so that some ensemble member remains close to for orders of magnitude longer than unperturbed solutions of . This is true even when the perturbations are significantly smaller than the model error.</abstract><cop>United States</cop><pmid>16712079</pmid><doi>10.1103/physrevlett.96.144102</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2006-04, Vol.96 (14), p.144102-144102, Article 144102 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_68001886 |
source | American Physical Society Journals |
title | Making forecasts for chaotic physical processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T18%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Making%20forecasts%20for%20chaotic%20physical%20processes&rft.jtitle=Physical%20review%20letters&rft.au=Danforth,%20Christopher%20M&rft.date=2006-04-14&rft.volume=96&rft.issue=14&rft.spage=144102&rft.epage=144102&rft.pages=144102-144102&rft.artnum=144102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.96.144102&rft_dat=%3Cproquest_cross%3E68001886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68001886&rft_id=info:pmid/16712079&rfr_iscdi=true |