Making forecasts for chaotic physical processes

Making a prediction for a chaotic physical process involves specifying the probability associated with each possible outcome. Ensembles of solutions are frequently used to estimate this probability distribution. However, for a typical chaotic physical system and model of that system, no solution of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2006-04, Vol.96 (14), p.144102-144102, Article 144102
Hauptverfasser: Danforth, Christopher M, Yorke, James A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144102
container_issue 14
container_start_page 144102
container_title Physical review letters
container_volume 96
creator Danforth, Christopher M
Yorke, James A
description Making a prediction for a chaotic physical process involves specifying the probability associated with each possible outcome. Ensembles of solutions are frequently used to estimate this probability distribution. However, for a typical chaotic physical system and model of that system, no solution of remains close to for all time. We propose an alternative. This Letter shows how to inflate or systematically perturb the ensemble of solutions of so that some ensemble member remains close to for orders of magnitude longer than unperturbed solutions of . This is true even when the perturbations are significantly smaller than the model error.
doi_str_mv 10.1103/physrevlett.96.144102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68001886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68001886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-34c5b08ddb05abbae2b5bda5b93035a6a9f7b84a3409fb7a20b01ed1c9c91ff93</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EoqXwCaCs2CWdiRM7XqKKl1QEQrC2xo5NA2lT4rRS_x5XrcRqZnEfuoexa4QMEfh0vdiF3m1bNwyZEhkWBUJ-wsYIUqUSsThlYwCOqQKQI3YRwjcAYC6qczZCITGPwjGbvtBPs_pKfNc7S2EI-y-xC-qGxib7ksZSm6z7zroQXLhkZ57a4K6Od8I-H-4_Zk_p_PXxeXY3Ty2XfEh5YUsDVV0bKMkYcrkpTU2lURx4SYKUl6YqiBegvJGUgwF0NVplFXqv-ITdHnJj8-_GhUEvm2Bd29LKdZugRRXHVJWIwvIgtH0XIhGv132zpH6nEfSelH6LI97ddh5JaSX0gVT03RwLNmbp6n_XEQ3_A4MaaH4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68001886</pqid></control><display><type>article</type><title>Making forecasts for chaotic physical processes</title><source>American Physical Society Journals</source><creator>Danforth, Christopher M ; Yorke, James A</creator><creatorcontrib>Danforth, Christopher M ; Yorke, James A</creatorcontrib><description>Making a prediction for a chaotic physical process involves specifying the probability associated with each possible outcome. Ensembles of solutions are frequently used to estimate this probability distribution. However, for a typical chaotic physical system and model of that system, no solution of remains close to for all time. We propose an alternative. This Letter shows how to inflate or systematically perturb the ensemble of solutions of so that some ensemble member remains close to for orders of magnitude longer than unperturbed solutions of . This is true even when the perturbations are significantly smaller than the model error.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.96.144102</identifier><identifier>PMID: 16712079</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2006-04, Vol.96 (14), p.144102-144102, Article 144102</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-34c5b08ddb05abbae2b5bda5b93035a6a9f7b84a3409fb7a20b01ed1c9c91ff93</citedby><cites>FETCH-LOGICAL-c373t-34c5b08ddb05abbae2b5bda5b93035a6a9f7b84a3409fb7a20b01ed1c9c91ff93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16712079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Danforth, Christopher M</creatorcontrib><creatorcontrib>Yorke, James A</creatorcontrib><title>Making forecasts for chaotic physical processes</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Making a prediction for a chaotic physical process involves specifying the probability associated with each possible outcome. Ensembles of solutions are frequently used to estimate this probability distribution. However, for a typical chaotic physical system and model of that system, no solution of remains close to for all time. We propose an alternative. This Letter shows how to inflate or systematically perturb the ensemble of solutions of so that some ensemble member remains close to for orders of magnitude longer than unperturbed solutions of . This is true even when the perturbations are significantly smaller than the model error.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAQRS0EoqXwCaCs2CWdiRM7XqKKl1QEQrC2xo5NA2lT4rRS_x5XrcRqZnEfuoexa4QMEfh0vdiF3m1bNwyZEhkWBUJ-wsYIUqUSsThlYwCOqQKQI3YRwjcAYC6qczZCITGPwjGbvtBPs_pKfNc7S2EI-y-xC-qGxib7ksZSm6z7zroQXLhkZ57a4K6Od8I-H-4_Zk_p_PXxeXY3Ty2XfEh5YUsDVV0bKMkYcrkpTU2lURx4SYKUl6YqiBegvJGUgwF0NVplFXqv-ITdHnJj8-_GhUEvm2Bd29LKdZugRRXHVJWIwvIgtH0XIhGv132zpH6nEfSelH6LI97ddh5JaSX0gVT03RwLNmbp6n_XEQ3_A4MaaH4</recordid><startdate>20060414</startdate><enddate>20060414</enddate><creator>Danforth, Christopher M</creator><creator>Yorke, James A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060414</creationdate><title>Making forecasts for chaotic physical processes</title><author>Danforth, Christopher M ; Yorke, James A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-34c5b08ddb05abbae2b5bda5b93035a6a9f7b84a3409fb7a20b01ed1c9c91ff93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danforth, Christopher M</creatorcontrib><creatorcontrib>Yorke, James A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danforth, Christopher M</au><au>Yorke, James A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Making forecasts for chaotic physical processes</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2006-04-14</date><risdate>2006</risdate><volume>96</volume><issue>14</issue><spage>144102</spage><epage>144102</epage><pages>144102-144102</pages><artnum>144102</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Making a prediction for a chaotic physical process involves specifying the probability associated with each possible outcome. Ensembles of solutions are frequently used to estimate this probability distribution. However, for a typical chaotic physical system and model of that system, no solution of remains close to for all time. We propose an alternative. This Letter shows how to inflate or systematically perturb the ensemble of solutions of so that some ensemble member remains close to for orders of magnitude longer than unperturbed solutions of . This is true even when the perturbations are significantly smaller than the model error.</abstract><cop>United States</cop><pmid>16712079</pmid><doi>10.1103/physrevlett.96.144102</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2006-04, Vol.96 (14), p.144102-144102, Article 144102
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_68001886
source American Physical Society Journals
title Making forecasts for chaotic physical processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T18%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Making%20forecasts%20for%20chaotic%20physical%20processes&rft.jtitle=Physical%20review%20letters&rft.au=Danforth,%20Christopher%20M&rft.date=2006-04-14&rft.volume=96&rft.issue=14&rft.spage=144102&rft.epage=144102&rft.pages=144102-144102&rft.artnum=144102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.96.144102&rft_dat=%3Cproquest_cross%3E68001886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68001886&rft_id=info:pmid/16712079&rfr_iscdi=true