Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model
This study presents experiments on the learning of object handling behaviors by a small humanoid robot using a dynamic neural network model, the recurrent neural network with parametric bias (RNNPB). The first experiment showed that after the robot learned different types of ball handling behaviors...
Gespeichert in:
Veröffentlicht in: | Neural networks 2006-04, Vol.19 (3), p.323-337 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 337 |
---|---|
container_issue | 3 |
container_start_page | 323 |
container_title | Neural networks |
container_volume | 19 |
creator | Ito, Masato Noda, Kuniaki Hoshino, Yukiko Tani, Jun |
description | This study presents experiments on the learning of object handling behaviors by a small humanoid robot using a dynamic neural network model, the recurrent neural network with parametric bias (RNNPB). The first experiment showed that after the robot learned different types of ball handling behaviors using human direct teaching, the robot was able to generate adequate ball handling motor sequences situated to the relative position between the robot's hands and the ball. The same scheme was applied to a block handling learning task where it was shown that the robot can switch among learned different block handling sequences, situated to the ways of interaction by human supporters. Our analysis showed that entrainment of the internal memory structures of the RNNPB through the interactions of the objects and the human supporters are the essential mechanisms for those observed situated behaviors of the robot |
doi_str_mv | 10.1016/j.neunet.2006.02.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67997256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608006000311</els_id><sourcerecordid>19379719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-dd44aad0e3c130b768ac6332f1246bc68c7856cd1814bab44ca89a431e5822aa3</originalsourceid><addsrcrecordid>eNqFkTuP1DAQgC0E4vYW_gFCbqBL8CNxnAYJHXAgnUQDtTWxJ7deEvuwk0Xb8Nvxale6DpqZKb55aD5CXnFWc8bVu30dcA241IIxVTNRM9Y9IRuuu74SnRZPyYbpXlaKaXZFrnPeswLqRj4nV1wprlupNuTPx2OA2VsKwVEfFkxgF39Aeo-h1IuPgcaRxmGPdqG7Qk0-3NMBd3DwMWU6HCnQPMM00d06Q4je0RSHuNA1n0ig7rKhnJtgKmn5HdNPOkeH0wvybIQp48tL3pIfnz99v_lS3X27_Xrz4a6yLVdL5VzTADiG0nLJhk5psEpKMXLRqMEqbTvdKuu45s0AQ9NY0D00kmOrhQCQW_L2PPchxV8r5sXMPlucJggY12xU1_edaNV_Qd7Lru9K3JLmDNoUc044mofkZ0hHw5k5CTJ7cxZkToIME6YIKm2vL_PXYUb32HQxUoA3FwCyhWlMEKzPj1ynVd9KUbj3Zw7L2w4ek8nWY7DofCqqjIv-35f8BW-4srA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19379719</pqid></control><display><type>article</type><title>Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ito, Masato ; Noda, Kuniaki ; Hoshino, Yukiko ; Tani, Jun</creator><creatorcontrib>Ito, Masato ; Noda, Kuniaki ; Hoshino, Yukiko ; Tani, Jun</creatorcontrib><description>This study presents experiments on the learning of object handling behaviors by a small humanoid robot using a dynamic neural network model, the recurrent neural network with parametric bias (RNNPB). The first experiment showed that after the robot learned different types of ball handling behaviors using human direct teaching, the robot was able to generate adequate ball handling motor sequences situated to the relative position between the robot's hands and the ball. The same scheme was applied to a block handling learning task where it was shown that the robot can switch among learned different block handling sequences, situated to the ways of interaction by human supporters. Our analysis showed that entrainment of the internal memory structures of the RNNPB through the interactions of the objects and the human supporters are the essential mechanisms for those observed situated behaviors of the robot</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2006.02.007</identifier><identifier>PMID: 16618536</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Computer science; control theory; systems ; Computer Simulation ; Connectionism. Neural networks ; Dynamical systems approach ; Exact sciences and technology ; Handling (Psychology) ; Humans ; Learning of object handling behavior ; Memory - physiology ; Models, Neurological ; Neural Networks (Computer) ; Nonlinear Dynamics ; Predictive Value of Tests ; Psychomotor Performance - physiology ; Recurrent neural network</subject><ispartof>Neural networks, 2006-04, Vol.19 (3), p.323-337</ispartof><rights>2006 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-dd44aad0e3c130b768ac6332f1246bc68c7856cd1814bab44ca89a431e5822aa3</citedby><cites>FETCH-LOGICAL-c516t-dd44aad0e3c130b768ac6332f1246bc68c7856cd1814bab44ca89a431e5822aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0893608006000311$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17869532$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16618536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ito, Masato</creatorcontrib><creatorcontrib>Noda, Kuniaki</creatorcontrib><creatorcontrib>Hoshino, Yukiko</creatorcontrib><creatorcontrib>Tani, Jun</creatorcontrib><title>Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>This study presents experiments on the learning of object handling behaviors by a small humanoid robot using a dynamic neural network model, the recurrent neural network with parametric bias (RNNPB). The first experiment showed that after the robot learned different types of ball handling behaviors using human direct teaching, the robot was able to generate adequate ball handling motor sequences situated to the relative position between the robot's hands and the ball. The same scheme was applied to a block handling learning task where it was shown that the robot can switch among learned different block handling sequences, situated to the ways of interaction by human supporters. Our analysis showed that entrainment of the internal memory structures of the RNNPB through the interactions of the objects and the human supporters are the essential mechanisms for those observed situated behaviors of the robot</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Connectionism. Neural networks</subject><subject>Dynamical systems approach</subject><subject>Exact sciences and technology</subject><subject>Handling (Psychology)</subject><subject>Humans</subject><subject>Learning of object handling behavior</subject><subject>Memory - physiology</subject><subject>Models, Neurological</subject><subject>Neural Networks (Computer)</subject><subject>Nonlinear Dynamics</subject><subject>Predictive Value of Tests</subject><subject>Psychomotor Performance - physiology</subject><subject>Recurrent neural network</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkTuP1DAQgC0E4vYW_gFCbqBL8CNxnAYJHXAgnUQDtTWxJ7deEvuwk0Xb8Nvxale6DpqZKb55aD5CXnFWc8bVu30dcA241IIxVTNRM9Y9IRuuu74SnRZPyYbpXlaKaXZFrnPeswLqRj4nV1wprlupNuTPx2OA2VsKwVEfFkxgF39Aeo-h1IuPgcaRxmGPdqG7Qk0-3NMBd3DwMWU6HCnQPMM00d06Q4je0RSHuNA1n0ig7rKhnJtgKmn5HdNPOkeH0wvybIQp48tL3pIfnz99v_lS3X27_Xrz4a6yLVdL5VzTADiG0nLJhk5psEpKMXLRqMEqbTvdKuu45s0AQ9NY0D00kmOrhQCQW_L2PPchxV8r5sXMPlucJggY12xU1_edaNV_Qd7Lru9K3JLmDNoUc044mofkZ0hHw5k5CTJ7cxZkToIME6YIKm2vL_PXYUb32HQxUoA3FwCyhWlMEKzPj1ynVd9KUbj3Zw7L2w4ek8nWY7DofCqqjIv-35f8BW-4srA</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Ito, Masato</creator><creator>Noda, Kuniaki</creator><creator>Hoshino, Yukiko</creator><creator>Tani, Jun</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20060401</creationdate><title>Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model</title><author>Ito, Masato ; Noda, Kuniaki ; Hoshino, Yukiko ; Tani, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-dd44aad0e3c130b768ac6332f1246bc68c7856cd1814bab44ca89a431e5822aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Connectionism. Neural networks</topic><topic>Dynamical systems approach</topic><topic>Exact sciences and technology</topic><topic>Handling (Psychology)</topic><topic>Humans</topic><topic>Learning of object handling behavior</topic><topic>Memory - physiology</topic><topic>Models, Neurological</topic><topic>Neural Networks (Computer)</topic><topic>Nonlinear Dynamics</topic><topic>Predictive Value of Tests</topic><topic>Psychomotor Performance - physiology</topic><topic>Recurrent neural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ito, Masato</creatorcontrib><creatorcontrib>Noda, Kuniaki</creatorcontrib><creatorcontrib>Hoshino, Yukiko</creatorcontrib><creatorcontrib>Tani, Jun</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ito, Masato</au><au>Noda, Kuniaki</au><au>Hoshino, Yukiko</au><au>Tani, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2006-04-01</date><risdate>2006</risdate><volume>19</volume><issue>3</issue><spage>323</spage><epage>337</epage><pages>323-337</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>This study presents experiments on the learning of object handling behaviors by a small humanoid robot using a dynamic neural network model, the recurrent neural network with parametric bias (RNNPB). The first experiment showed that after the robot learned different types of ball handling behaviors using human direct teaching, the robot was able to generate adequate ball handling motor sequences situated to the relative position between the robot's hands and the ball. The same scheme was applied to a block handling learning task where it was shown that the robot can switch among learned different block handling sequences, situated to the ways of interaction by human supporters. Our analysis showed that entrainment of the internal memory structures of the RNNPB through the interactions of the objects and the human supporters are the essential mechanisms for those observed situated behaviors of the robot</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>16618536</pmid><doi>10.1016/j.neunet.2006.02.007</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2006-04, Vol.19 (3), p.323-337 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_67997256 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Algorithms Applied sciences Artificial Intelligence Computer science control theory systems Computer Simulation Connectionism. Neural networks Dynamical systems approach Exact sciences and technology Handling (Psychology) Humans Learning of object handling behavior Memory - physiology Models, Neurological Neural Networks (Computer) Nonlinear Dynamics Predictive Value of Tests Psychomotor Performance - physiology Recurrent neural network |
title | Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20and%20interactive%20generation%20of%20object%20handling%20behaviors%20by%20a%20small%20humanoid%20robot%20using%20a%20dynamic%20neural%20network%20model&rft.jtitle=Neural%20networks&rft.au=Ito,%20Masato&rft.date=2006-04-01&rft.volume=19&rft.issue=3&rft.spage=323&rft.epage=337&rft.pages=323-337&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2006.02.007&rft_dat=%3Cproquest_cross%3E19379719%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19379719&rft_id=info:pmid/16618536&rft_els_id=S0893608006000311&rfr_iscdi=true |