The effects of poly(ethylene glycol) on the solution structure of human serum albumin

Protein physical and chemical properties can be altered by polymer interaction. The presence of several high affinity binding sites on human serum albumin (HSA) makes it a possible target for many organic and polymer molecules. This study was designed to examine the interaction of HSA with poly(ethy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biopolymers 2005-08, Vol.78 (5), p.231-236
Hauptverfasser: Ragi, C., Sedaghat-Herati, M. R., Ouameur, A. Ahmed, Tajmir-Riahi, H. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 236
container_issue 5
container_start_page 231
container_title Biopolymers
container_volume 78
creator Ragi, C.
Sedaghat-Herati, M. R.
Ouameur, A. Ahmed
Tajmir-Riahi, H. A.
description Protein physical and chemical properties can be altered by polymer interaction. The presence of several high affinity binding sites on human serum albumin (HSA) makes it a possible target for many organic and polymer molecules. This study was designed to examine the interaction of HSA with poly(ethylene glycol) (PEG) in aqueous solution at physiological conditions. Fourier transform infrared, ultraviolet‐visible, and CD spectroscopic methods were used to determine the polymer binding mode, the binding constant, and the effects of polymer complexation on protein secondary structure. The spectroscopic results showed that PEG is located along the polypeptide chains through H‐bonding interactions with an overall affinity constant of K = 4.12 × 105M−1. The protein secondary structure showed no alterations at low PEG concentration (0.1 mM), whereas at high polymer content (1 mM), a reduction of α‐helix from 59 (free HSA) to 53% and an increase of β‐turn from 11 (free HSA) to 22% occurred in the PEG–HSA complexes (infrared data). The CDSSTR program (CD data) also showed no major alterations of the protein secondary structure at low PEG concentrations (0.1 and 0.5 mM), while at high polymer content (1 mM), a major reduction of α‐helix from 69 (free HSA) to 58% and an increase of β‐turn from 7 (free HSA) to 18% was observed. 2005 Wiley Periodicals, Inc. Biopolymers 78: 231–236, 2005
doi_str_mv 10.1002/bip.20281
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67992659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17554886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3921-e6df38bdd332311e5ab28ce7c06b6ada4aea545ead3548fb06a2b57b8b30ebb03</originalsourceid><addsrcrecordid>eNqFkE9P4zAQxS0EgsJy4AugnBAcUsZ2nD9HYJcuAnYXCcTRspMJDThNsWNBvv26tMAJcZoZ6_feeB4hexTGFIAd62Y-ZsByukZGFIosDj1bJyMASGMumNgi2849AiQJp7BJtqjIOeMsGZG72ylGWNdY9i7q6mjemeEQ--lgcIbRgxnKzhxF3SzqA-c64_smDK63vuy9xYVk6lsVntD6NlJG-7aZ_SAbtTIOd1d1h9yd_7o9-x1f_Z1cnJ1cxSUvGI0xrWqe66ri4TeUolCa5SVmJaQ6VZVKFCqRCFQVF0lea0gV0yLTueaAWgPfIQdL37ntnj26XraNK9EYNcPOO5lmRcFSUXwL0kyEDXkawKMlWNrOOYu1nNumVXaQFOQibBnClm9hB3Z_Zep1i9UnuUo3AMdL4KUxOHztJE8v_r1bxktF43p8_VAo-xRu4ZmQ938mEk4nIr-5_Cmv-X_e2pim</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17554886</pqid></control><display><type>article</type><title>The effects of poly(ethylene glycol) on the solution structure of human serum albumin</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ragi, C. ; Sedaghat-Herati, M. R. ; Ouameur, A. Ahmed ; Tajmir-Riahi, H. A.</creator><creatorcontrib>Ragi, C. ; Sedaghat-Herati, M. R. ; Ouameur, A. Ahmed ; Tajmir-Riahi, H. A.</creatorcontrib><description>Protein physical and chemical properties can be altered by polymer interaction. The presence of several high affinity binding sites on human serum albumin (HSA) makes it a possible target for many organic and polymer molecules. This study was designed to examine the interaction of HSA with poly(ethylene glycol) (PEG) in aqueous solution at physiological conditions. Fourier transform infrared, ultraviolet‐visible, and CD spectroscopic methods were used to determine the polymer binding mode, the binding constant, and the effects of polymer complexation on protein secondary structure. The spectroscopic results showed that PEG is located along the polypeptide chains through H‐bonding interactions with an overall affinity constant of K = 4.12 × 105M−1. The protein secondary structure showed no alterations at low PEG concentration (0.1 mM), whereas at high polymer content (1 mM), a reduction of α‐helix from 59 (free HSA) to 53% and an increase of β‐turn from 11 (free HSA) to 22% occurred in the PEG–HSA complexes (infrared data). The CDSSTR program (CD data) also showed no major alterations of the protein secondary structure at low PEG concentrations (0.1 and 0.5 mM), while at high polymer content (1 mM), a major reduction of α‐helix from 69 (free HSA) to 58% and an increase of β‐turn from 7 (free HSA) to 18% was observed. 2005 Wiley Periodicals, Inc. Biopolymers 78: 231–236, 2005</description><identifier>ISSN: 0006-3525</identifier><identifier>EISSN: 1097-0282</identifier><identifier>DOI: 10.1002/bip.20281</identifier><identifier>PMID: 15832324</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>binding constant ; binding mode ; Binding Sites ; CD spectroscopy ; Circular Dichroism ; Fourier transform infrared ; Humans ; poly(ethylene glycol) ; Polyethylene Glycols - chemistry ; protein ; Protein Structure, Secondary ; secondary structure ; Serum Albumin - chemistry ; Solutions - chemistry ; Spectroscopy, Fourier Transform Infrared ; ultraviolet-visible</subject><ispartof>Biopolymers, 2005-08, Vol.78 (5), p.231-236</ispartof><rights>Copyright © 2005 Wiley Periodicals, Inc.</rights><rights>Copyright 2005 Wiley Periodicals, Inc</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3921-e6df38bdd332311e5ab28ce7c06b6ada4aea545ead3548fb06a2b57b8b30ebb03</citedby><cites>FETCH-LOGICAL-c3921-e6df38bdd332311e5ab28ce7c06b6ada4aea545ead3548fb06a2b57b8b30ebb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbip.20281$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbip.20281$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15832324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ragi, C.</creatorcontrib><creatorcontrib>Sedaghat-Herati, M. R.</creatorcontrib><creatorcontrib>Ouameur, A. Ahmed</creatorcontrib><creatorcontrib>Tajmir-Riahi, H. A.</creatorcontrib><title>The effects of poly(ethylene glycol) on the solution structure of human serum albumin</title><title>Biopolymers</title><addtitle>Biopolymers</addtitle><description>Protein physical and chemical properties can be altered by polymer interaction. The presence of several high affinity binding sites on human serum albumin (HSA) makes it a possible target for many organic and polymer molecules. This study was designed to examine the interaction of HSA with poly(ethylene glycol) (PEG) in aqueous solution at physiological conditions. Fourier transform infrared, ultraviolet‐visible, and CD spectroscopic methods were used to determine the polymer binding mode, the binding constant, and the effects of polymer complexation on protein secondary structure. The spectroscopic results showed that PEG is located along the polypeptide chains through H‐bonding interactions with an overall affinity constant of K = 4.12 × 105M−1. The protein secondary structure showed no alterations at low PEG concentration (0.1 mM), whereas at high polymer content (1 mM), a reduction of α‐helix from 59 (free HSA) to 53% and an increase of β‐turn from 11 (free HSA) to 22% occurred in the PEG–HSA complexes (infrared data). The CDSSTR program (CD data) also showed no major alterations of the protein secondary structure at low PEG concentrations (0.1 and 0.5 mM), while at high polymer content (1 mM), a major reduction of α‐helix from 69 (free HSA) to 58% and an increase of β‐turn from 7 (free HSA) to 18% was observed. 2005 Wiley Periodicals, Inc. Biopolymers 78: 231–236, 2005</description><subject>binding constant</subject><subject>binding mode</subject><subject>Binding Sites</subject><subject>CD spectroscopy</subject><subject>Circular Dichroism</subject><subject>Fourier transform infrared</subject><subject>Humans</subject><subject>poly(ethylene glycol)</subject><subject>Polyethylene Glycols - chemistry</subject><subject>protein</subject><subject>Protein Structure, Secondary</subject><subject>secondary structure</subject><subject>Serum Albumin - chemistry</subject><subject>Solutions - chemistry</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>ultraviolet-visible</subject><issn>0006-3525</issn><issn>1097-0282</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE9P4zAQxS0EgsJy4AugnBAcUsZ2nD9HYJcuAnYXCcTRspMJDThNsWNBvv26tMAJcZoZ6_feeB4hexTGFIAd62Y-ZsByukZGFIosDj1bJyMASGMumNgi2849AiQJp7BJtqjIOeMsGZG72ylGWNdY9i7q6mjemeEQ--lgcIbRgxnKzhxF3SzqA-c64_smDK63vuy9xYVk6lsVntD6NlJG-7aZ_SAbtTIOd1d1h9yd_7o9-x1f_Z1cnJ1cxSUvGI0xrWqe66ri4TeUolCa5SVmJaQ6VZVKFCqRCFQVF0lea0gV0yLTueaAWgPfIQdL37ntnj26XraNK9EYNcPOO5lmRcFSUXwL0kyEDXkawKMlWNrOOYu1nNumVXaQFOQibBnClm9hB3Z_Zep1i9UnuUo3AMdL4KUxOHztJE8v_r1bxktF43p8_VAo-xRu4ZmQ938mEk4nIr-5_Cmv-X_e2pim</recordid><startdate>20050805</startdate><enddate>20050805</enddate><creator>Ragi, C.</creator><creator>Sedaghat-Herati, M. R.</creator><creator>Ouameur, A. Ahmed</creator><creator>Tajmir-Riahi, H. A.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20050805</creationdate><title>The effects of poly(ethylene glycol) on the solution structure of human serum albumin</title><author>Ragi, C. ; Sedaghat-Herati, M. R. ; Ouameur, A. Ahmed ; Tajmir-Riahi, H. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3921-e6df38bdd332311e5ab28ce7c06b6ada4aea545ead3548fb06a2b57b8b30ebb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>binding constant</topic><topic>binding mode</topic><topic>Binding Sites</topic><topic>CD spectroscopy</topic><topic>Circular Dichroism</topic><topic>Fourier transform infrared</topic><topic>Humans</topic><topic>poly(ethylene glycol)</topic><topic>Polyethylene Glycols - chemistry</topic><topic>protein</topic><topic>Protein Structure, Secondary</topic><topic>secondary structure</topic><topic>Serum Albumin - chemistry</topic><topic>Solutions - chemistry</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>ultraviolet-visible</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ragi, C.</creatorcontrib><creatorcontrib>Sedaghat-Herati, M. R.</creatorcontrib><creatorcontrib>Ouameur, A. Ahmed</creatorcontrib><creatorcontrib>Tajmir-Riahi, H. A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biopolymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ragi, C.</au><au>Sedaghat-Herati, M. R.</au><au>Ouameur, A. Ahmed</au><au>Tajmir-Riahi, H. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of poly(ethylene glycol) on the solution structure of human serum albumin</atitle><jtitle>Biopolymers</jtitle><addtitle>Biopolymers</addtitle><date>2005-08-05</date><risdate>2005</risdate><volume>78</volume><issue>5</issue><spage>231</spage><epage>236</epage><pages>231-236</pages><issn>0006-3525</issn><eissn>1097-0282</eissn><abstract>Protein physical and chemical properties can be altered by polymer interaction. The presence of several high affinity binding sites on human serum albumin (HSA) makes it a possible target for many organic and polymer molecules. This study was designed to examine the interaction of HSA with poly(ethylene glycol) (PEG) in aqueous solution at physiological conditions. Fourier transform infrared, ultraviolet‐visible, and CD spectroscopic methods were used to determine the polymer binding mode, the binding constant, and the effects of polymer complexation on protein secondary structure. The spectroscopic results showed that PEG is located along the polypeptide chains through H‐bonding interactions with an overall affinity constant of K = 4.12 × 105M−1. The protein secondary structure showed no alterations at low PEG concentration (0.1 mM), whereas at high polymer content (1 mM), a reduction of α‐helix from 59 (free HSA) to 53% and an increase of β‐turn from 11 (free HSA) to 22% occurred in the PEG–HSA complexes (infrared data). The CDSSTR program (CD data) also showed no major alterations of the protein secondary structure at low PEG concentrations (0.1 and 0.5 mM), while at high polymer content (1 mM), a major reduction of α‐helix from 69 (free HSA) to 58% and an increase of β‐turn from 7 (free HSA) to 18% was observed. 2005 Wiley Periodicals, Inc. Biopolymers 78: 231–236, 2005</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15832324</pmid><doi>10.1002/bip.20281</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3525
ispartof Biopolymers, 2005-08, Vol.78 (5), p.231-236
issn 0006-3525
1097-0282
language eng
recordid cdi_proquest_miscellaneous_67992659
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects binding constant
binding mode
Binding Sites
CD spectroscopy
Circular Dichroism
Fourier transform infrared
Humans
poly(ethylene glycol)
Polyethylene Glycols - chemistry
protein
Protein Structure, Secondary
secondary structure
Serum Albumin - chemistry
Solutions - chemistry
Spectroscopy, Fourier Transform Infrared
ultraviolet-visible
title The effects of poly(ethylene glycol) on the solution structure of human serum albumin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A08%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20poly(ethylene%20glycol)%20on%20the%20solution%20structure%20of%20human%20serum%20albumin&rft.jtitle=Biopolymers&rft.au=Ragi,%20C.&rft.date=2005-08-05&rft.volume=78&rft.issue=5&rft.spage=231&rft.epage=236&rft.pages=231-236&rft.issn=0006-3525&rft.eissn=1097-0282&rft_id=info:doi/10.1002/bip.20281&rft_dat=%3Cproquest_cross%3E17554886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17554886&rft_id=info:pmid/15832324&rfr_iscdi=true