Designing compliant substrates to regulate the motion of vesicles
By integrating mesoscale models for hydrodynamics and micromechanics, we examine fluid-driven motion of vesicles on compliant surfaces. The vesicles, modeled as fluid-filled elastic shells, represent biological cells or polymeric microcapsules. Focusing on nonspecific interactions between these vesi...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2006-04, Vol.96 (14), p.148103-148103, Article 148103 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148103 |
---|---|
container_issue | 14 |
container_start_page | 148103 |
container_title | Physical review letters |
container_volume | 96 |
creator | Alexeev, Alexander Verberg, Rolf Balazs, Anna C |
description | By integrating mesoscale models for hydrodynamics and micromechanics, we examine fluid-driven motion of vesicles on compliant surfaces. The vesicles, modeled as fluid-filled elastic shells, represent biological cells or polymeric microcapsules. Focusing on nonspecific interactions between these vesicles and synthetic substrates, we isolate mechanically and topographically patterned surfaces that transmit stop and go instructions, causing the vesicles to halt at specific locations, and with an increase in the flow velocity, to resume moving. For surfaces containing arrays of compliant posts, the substrates also affect the vesicles' gait, causing them to "crawl," "walk," or "jump." The latter behavior could promote the intermixing of reactants that are encapsulated within the microcapsules. Such control over vesicle dynamics can facilitate various biological assays and fabrication of arrays of mobile microreactors. |
doi_str_mv | 10.1103/PhysRevLett.96.148103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67984649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67984649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-846678dba3e67605307040956bf905b4bd079bfa4d3399b185f2dfa9310328493</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EoqXwCSCv2KWMY8eOlxVvqRIIwdqyE7sNSuISO5X69xhaCVbz0Ny5MwehSwJzQoDevK534c1ulzbGueRzwsrUPUJTAkJmghB2jKYAlGQSQEzQWQifAEByXp6iCeGC5CmfosWdDc2qb_oVrny3aRvdRxxGE-Kgow04ejzY1dimAse1xZ2Pje-xd3ibhFVrwzk6cboN9uIQZ-jj4f799ilbvjw-3y6WWUULGbOScS7K2mhqueBQUBDAQBbcOAmFYaZOhxunWU2plIaUhctrpyVNb-Ulk3SGrvd7N4P_Gm2IqmtCZdtW99aPQXEhk8fvYLEfrAYfwmCd2gxNp4edIqB-2Kl_7JTkas8u6a4OBqPpbP2nOsCi37-dbQs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67984649</pqid></control><display><type>article</type><title>Designing compliant substrates to regulate the motion of vesicles</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Alexeev, Alexander ; Verberg, Rolf ; Balazs, Anna C</creator><creatorcontrib>Alexeev, Alexander ; Verberg, Rolf ; Balazs, Anna C</creatorcontrib><description>By integrating mesoscale models for hydrodynamics and micromechanics, we examine fluid-driven motion of vesicles on compliant surfaces. The vesicles, modeled as fluid-filled elastic shells, represent biological cells or polymeric microcapsules. Focusing on nonspecific interactions between these vesicles and synthetic substrates, we isolate mechanically and topographically patterned surfaces that transmit stop and go instructions, causing the vesicles to halt at specific locations, and with an increase in the flow velocity, to resume moving. For surfaces containing arrays of compliant posts, the substrates also affect the vesicles' gait, causing them to "crawl," "walk," or "jump." The latter behavior could promote the intermixing of reactants that are encapsulated within the microcapsules. Such control over vesicle dynamics can facilitate various biological assays and fabrication of arrays of mobile microreactors.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.96.148103</identifier><identifier>PMID: 16712126</identifier><language>eng</language><publisher>United States</publisher><subject>Computer Simulation ; Elasticity ; Membrane Fluidity ; Models, Biological ; Motion ; Transport Vesicles - physiology</subject><ispartof>Physical review letters, 2006-04, Vol.96 (14), p.148103-148103, Article 148103</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-846678dba3e67605307040956bf905b4bd079bfa4d3399b185f2dfa9310328493</citedby><cites>FETCH-LOGICAL-c359t-846678dba3e67605307040956bf905b4bd079bfa4d3399b185f2dfa9310328493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16712126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alexeev, Alexander</creatorcontrib><creatorcontrib>Verberg, Rolf</creatorcontrib><creatorcontrib>Balazs, Anna C</creatorcontrib><title>Designing compliant substrates to regulate the motion of vesicles</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>By integrating mesoscale models for hydrodynamics and micromechanics, we examine fluid-driven motion of vesicles on compliant surfaces. The vesicles, modeled as fluid-filled elastic shells, represent biological cells or polymeric microcapsules. Focusing on nonspecific interactions between these vesicles and synthetic substrates, we isolate mechanically and topographically patterned surfaces that transmit stop and go instructions, causing the vesicles to halt at specific locations, and with an increase in the flow velocity, to resume moving. For surfaces containing arrays of compliant posts, the substrates also affect the vesicles' gait, causing them to "crawl," "walk," or "jump." The latter behavior could promote the intermixing of reactants that are encapsulated within the microcapsules. Such control over vesicle dynamics can facilitate various biological assays and fabrication of arrays of mobile microreactors.</description><subject>Computer Simulation</subject><subject>Elasticity</subject><subject>Membrane Fluidity</subject><subject>Models, Biological</subject><subject>Motion</subject><subject>Transport Vesicles - physiology</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkMtOwzAQRS0EoqXwCSCv2KWMY8eOlxVvqRIIwdqyE7sNSuISO5X69xhaCVbz0Ny5MwehSwJzQoDevK534c1ulzbGueRzwsrUPUJTAkJmghB2jKYAlGQSQEzQWQifAEByXp6iCeGC5CmfosWdDc2qb_oVrny3aRvdRxxGE-Kgow04ejzY1dimAse1xZ2Pje-xd3ibhFVrwzk6cboN9uIQZ-jj4f799ilbvjw-3y6WWUULGbOScS7K2mhqueBQUBDAQBbcOAmFYaZOhxunWU2plIaUhctrpyVNb-Ulk3SGrvd7N4P_Gm2IqmtCZdtW99aPQXEhk8fvYLEfrAYfwmCd2gxNp4edIqB-2Kl_7JTkas8u6a4OBqPpbP2nOsCi37-dbQs</recordid><startdate>20060414</startdate><enddate>20060414</enddate><creator>Alexeev, Alexander</creator><creator>Verberg, Rolf</creator><creator>Balazs, Anna C</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060414</creationdate><title>Designing compliant substrates to regulate the motion of vesicles</title><author>Alexeev, Alexander ; Verberg, Rolf ; Balazs, Anna C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-846678dba3e67605307040956bf905b4bd079bfa4d3399b185f2dfa9310328493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computer Simulation</topic><topic>Elasticity</topic><topic>Membrane Fluidity</topic><topic>Models, Biological</topic><topic>Motion</topic><topic>Transport Vesicles - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexeev, Alexander</creatorcontrib><creatorcontrib>Verberg, Rolf</creatorcontrib><creatorcontrib>Balazs, Anna C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexeev, Alexander</au><au>Verberg, Rolf</au><au>Balazs, Anna C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing compliant substrates to regulate the motion of vesicles</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2006-04-14</date><risdate>2006</risdate><volume>96</volume><issue>14</issue><spage>148103</spage><epage>148103</epage><pages>148103-148103</pages><artnum>148103</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>By integrating mesoscale models for hydrodynamics and micromechanics, we examine fluid-driven motion of vesicles on compliant surfaces. The vesicles, modeled as fluid-filled elastic shells, represent biological cells or polymeric microcapsules. Focusing on nonspecific interactions between these vesicles and synthetic substrates, we isolate mechanically and topographically patterned surfaces that transmit stop and go instructions, causing the vesicles to halt at specific locations, and with an increase in the flow velocity, to resume moving. For surfaces containing arrays of compliant posts, the substrates also affect the vesicles' gait, causing them to "crawl," "walk," or "jump." The latter behavior could promote the intermixing of reactants that are encapsulated within the microcapsules. Such control over vesicle dynamics can facilitate various biological assays and fabrication of arrays of mobile microreactors.</abstract><cop>United States</cop><pmid>16712126</pmid><doi>10.1103/PhysRevLett.96.148103</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2006-04, Vol.96 (14), p.148103-148103, Article 148103 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_67984649 |
source | MEDLINE; American Physical Society Journals |
subjects | Computer Simulation Elasticity Membrane Fluidity Models, Biological Motion Transport Vesicles - physiology |
title | Designing compliant substrates to regulate the motion of vesicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A58%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20compliant%20substrates%20to%20regulate%20the%20motion%20of%20vesicles&rft.jtitle=Physical%20review%20letters&rft.au=Alexeev,%20Alexander&rft.date=2006-04-14&rft.volume=96&rft.issue=14&rft.spage=148103&rft.epage=148103&rft.pages=148103-148103&rft.artnum=148103&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.96.148103&rft_dat=%3Cproquest_cross%3E67984649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67984649&rft_id=info:pmid/16712126&rfr_iscdi=true |