Designing compliant substrates to regulate the motion of vesicles

By integrating mesoscale models for hydrodynamics and micromechanics, we examine fluid-driven motion of vesicles on compliant surfaces. The vesicles, modeled as fluid-filled elastic shells, represent biological cells or polymeric microcapsules. Focusing on nonspecific interactions between these vesi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2006-04, Vol.96 (14), p.148103-148103, Article 148103
Hauptverfasser: Alexeev, Alexander, Verberg, Rolf, Balazs, Anna C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148103
container_issue 14
container_start_page 148103
container_title Physical review letters
container_volume 96
creator Alexeev, Alexander
Verberg, Rolf
Balazs, Anna C
description By integrating mesoscale models for hydrodynamics and micromechanics, we examine fluid-driven motion of vesicles on compliant surfaces. The vesicles, modeled as fluid-filled elastic shells, represent biological cells or polymeric microcapsules. Focusing on nonspecific interactions between these vesicles and synthetic substrates, we isolate mechanically and topographically patterned surfaces that transmit stop and go instructions, causing the vesicles to halt at specific locations, and with an increase in the flow velocity, to resume moving. For surfaces containing arrays of compliant posts, the substrates also affect the vesicles' gait, causing them to "crawl," "walk," or "jump." The latter behavior could promote the intermixing of reactants that are encapsulated within the microcapsules. Such control over vesicle dynamics can facilitate various biological assays and fabrication of arrays of mobile microreactors.
doi_str_mv 10.1103/PhysRevLett.96.148103
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67984649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67984649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-846678dba3e67605307040956bf905b4bd079bfa4d3399b185f2dfa9310328493</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EoqXwCSCv2KWMY8eOlxVvqRIIwdqyE7sNSuISO5X69xhaCVbz0Ny5MwehSwJzQoDevK534c1ulzbGueRzwsrUPUJTAkJmghB2jKYAlGQSQEzQWQifAEByXp6iCeGC5CmfosWdDc2qb_oVrny3aRvdRxxGE-Kgow04ejzY1dimAse1xZ2Pje-xd3ibhFVrwzk6cboN9uIQZ-jj4f799ilbvjw-3y6WWUULGbOScS7K2mhqueBQUBDAQBbcOAmFYaZOhxunWU2plIaUhctrpyVNb-Ulk3SGrvd7N4P_Gm2IqmtCZdtW99aPQXEhk8fvYLEfrAYfwmCd2gxNp4edIqB-2Kl_7JTkas8u6a4OBqPpbP2nOsCi37-dbQs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67984649</pqid></control><display><type>article</type><title>Designing compliant substrates to regulate the motion of vesicles</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Alexeev, Alexander ; Verberg, Rolf ; Balazs, Anna C</creator><creatorcontrib>Alexeev, Alexander ; Verberg, Rolf ; Balazs, Anna C</creatorcontrib><description>By integrating mesoscale models for hydrodynamics and micromechanics, we examine fluid-driven motion of vesicles on compliant surfaces. The vesicles, modeled as fluid-filled elastic shells, represent biological cells or polymeric microcapsules. Focusing on nonspecific interactions between these vesicles and synthetic substrates, we isolate mechanically and topographically patterned surfaces that transmit stop and go instructions, causing the vesicles to halt at specific locations, and with an increase in the flow velocity, to resume moving. For surfaces containing arrays of compliant posts, the substrates also affect the vesicles' gait, causing them to "crawl," "walk," or "jump." The latter behavior could promote the intermixing of reactants that are encapsulated within the microcapsules. Such control over vesicle dynamics can facilitate various biological assays and fabrication of arrays of mobile microreactors.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.96.148103</identifier><identifier>PMID: 16712126</identifier><language>eng</language><publisher>United States</publisher><subject>Computer Simulation ; Elasticity ; Membrane Fluidity ; Models, Biological ; Motion ; Transport Vesicles - physiology</subject><ispartof>Physical review letters, 2006-04, Vol.96 (14), p.148103-148103, Article 148103</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-846678dba3e67605307040956bf905b4bd079bfa4d3399b185f2dfa9310328493</citedby><cites>FETCH-LOGICAL-c359t-846678dba3e67605307040956bf905b4bd079bfa4d3399b185f2dfa9310328493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16712126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alexeev, Alexander</creatorcontrib><creatorcontrib>Verberg, Rolf</creatorcontrib><creatorcontrib>Balazs, Anna C</creatorcontrib><title>Designing compliant substrates to regulate the motion of vesicles</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>By integrating mesoscale models for hydrodynamics and micromechanics, we examine fluid-driven motion of vesicles on compliant surfaces. The vesicles, modeled as fluid-filled elastic shells, represent biological cells or polymeric microcapsules. Focusing on nonspecific interactions between these vesicles and synthetic substrates, we isolate mechanically and topographically patterned surfaces that transmit stop and go instructions, causing the vesicles to halt at specific locations, and with an increase in the flow velocity, to resume moving. For surfaces containing arrays of compliant posts, the substrates also affect the vesicles' gait, causing them to "crawl," "walk," or "jump." The latter behavior could promote the intermixing of reactants that are encapsulated within the microcapsules. Such control over vesicle dynamics can facilitate various biological assays and fabrication of arrays of mobile microreactors.</description><subject>Computer Simulation</subject><subject>Elasticity</subject><subject>Membrane Fluidity</subject><subject>Models, Biological</subject><subject>Motion</subject><subject>Transport Vesicles - physiology</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkMtOwzAQRS0EoqXwCSCv2KWMY8eOlxVvqRIIwdqyE7sNSuISO5X69xhaCVbz0Ny5MwehSwJzQoDevK534c1ulzbGueRzwsrUPUJTAkJmghB2jKYAlGQSQEzQWQifAEByXp6iCeGC5CmfosWdDc2qb_oVrny3aRvdRxxGE-Kgow04ejzY1dimAse1xZ2Pje-xd3ibhFVrwzk6cboN9uIQZ-jj4f799ilbvjw-3y6WWUULGbOScS7K2mhqueBQUBDAQBbcOAmFYaZOhxunWU2plIaUhctrpyVNb-Ulk3SGrvd7N4P_Gm2IqmtCZdtW99aPQXEhk8fvYLEfrAYfwmCd2gxNp4edIqB-2Kl_7JTkas8u6a4OBqPpbP2nOsCi37-dbQs</recordid><startdate>20060414</startdate><enddate>20060414</enddate><creator>Alexeev, Alexander</creator><creator>Verberg, Rolf</creator><creator>Balazs, Anna C</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060414</creationdate><title>Designing compliant substrates to regulate the motion of vesicles</title><author>Alexeev, Alexander ; Verberg, Rolf ; Balazs, Anna C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-846678dba3e67605307040956bf905b4bd079bfa4d3399b185f2dfa9310328493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computer Simulation</topic><topic>Elasticity</topic><topic>Membrane Fluidity</topic><topic>Models, Biological</topic><topic>Motion</topic><topic>Transport Vesicles - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexeev, Alexander</creatorcontrib><creatorcontrib>Verberg, Rolf</creatorcontrib><creatorcontrib>Balazs, Anna C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexeev, Alexander</au><au>Verberg, Rolf</au><au>Balazs, Anna C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing compliant substrates to regulate the motion of vesicles</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2006-04-14</date><risdate>2006</risdate><volume>96</volume><issue>14</issue><spage>148103</spage><epage>148103</epage><pages>148103-148103</pages><artnum>148103</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>By integrating mesoscale models for hydrodynamics and micromechanics, we examine fluid-driven motion of vesicles on compliant surfaces. The vesicles, modeled as fluid-filled elastic shells, represent biological cells or polymeric microcapsules. Focusing on nonspecific interactions between these vesicles and synthetic substrates, we isolate mechanically and topographically patterned surfaces that transmit stop and go instructions, causing the vesicles to halt at specific locations, and with an increase in the flow velocity, to resume moving. For surfaces containing arrays of compliant posts, the substrates also affect the vesicles' gait, causing them to "crawl," "walk," or "jump." The latter behavior could promote the intermixing of reactants that are encapsulated within the microcapsules. Such control over vesicle dynamics can facilitate various biological assays and fabrication of arrays of mobile microreactors.</abstract><cop>United States</cop><pmid>16712126</pmid><doi>10.1103/PhysRevLett.96.148103</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2006-04, Vol.96 (14), p.148103-148103, Article 148103
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_67984649
source MEDLINE; American Physical Society Journals
subjects Computer Simulation
Elasticity
Membrane Fluidity
Models, Biological
Motion
Transport Vesicles - physiology
title Designing compliant substrates to regulate the motion of vesicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A58%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20compliant%20substrates%20to%20regulate%20the%20motion%20of%20vesicles&rft.jtitle=Physical%20review%20letters&rft.au=Alexeev,%20Alexander&rft.date=2006-04-14&rft.volume=96&rft.issue=14&rft.spage=148103&rft.epage=148103&rft.pages=148103-148103&rft.artnum=148103&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.96.148103&rft_dat=%3Cproquest_cross%3E67984649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67984649&rft_id=info:pmid/16712126&rfr_iscdi=true