A Role for Nr-CAM in the Patterning of Binocular Visual Pathways

Retinal ganglion cell (RGC) axons diverge within the optic chiasm to project to opposite sides of the brain. In mouse, contralateral RGCs are distributed throughout the retina, whereas ipsilateral RGCs are restricted to the ventrotemporal crescent (VTC). While repulsive guidance mechanisms play a ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2006-05, Vol.50 (4), p.535-547
Hauptverfasser: Williams, Scott E., Grumet, Martin, Colman, David R., Henkemeyer, Mark, Mason, Carol A., Sakurai, Takeshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 547
container_issue 4
container_start_page 535
container_title Neuron (Cambridge, Mass.)
container_volume 50
creator Williams, Scott E.
Grumet, Martin
Colman, David R.
Henkemeyer, Mark
Mason, Carol A.
Sakurai, Takeshi
description Retinal ganglion cell (RGC) axons diverge within the optic chiasm to project to opposite sides of the brain. In mouse, contralateral RGCs are distributed throughout the retina, whereas ipsilateral RGCs are restricted to the ventrotemporal crescent (VTC). While repulsive guidance mechanisms play a major role in the formation of the ipsilateral projection, little is known about the contribution of growth-promoting interactions to the formation of binocular visual projections. Here, we show that the cell adhesion molecule Nr-CAM is expressed by RGCs that project contralaterally and is critical for the guidance of late-born RGCs within the VTC. Blocking Nr-CAM function causes an increase in the size of the ipsilateral projection and reduces neurite outgrowth on chiasm cells in an age- and region-specific manner. Finally, we demonstrate that EphB1/ephrin-B2-mediated repulsion and Nr-CAM-mediated attraction comprise distinct molecular programs that each contributes to the proper formation of binocular visual pathways.
doi_str_mv 10.1016/j.neuron.2006.03.037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67976279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627306002637</els_id><sourcerecordid>67976279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-a80b8dd49b091690e0e0d1b0434996fae0405b85ef471e8f9c998115184ef9923</originalsourceid><addsrcrecordid>eNqFkU1rFEEQhhtRzCb6D0QaBG-zVu3050VcF6OBJIqo16Znpsb0MjuddM8o-ff2sgtCDkoV1KGeqpeql7EXCEsEVG-2y5HmFMflCkAtoS6pH7EFgtWVQGsfswUYqyq10vUJO815C4BCWnzKTlBpwBXIBXu35l_jQLyPiV-narO-4mHk0w3xL36aKI1h_Mljz9-HMbbz4BP_EfLsh3375re_z8_Yk94PmZ4f6xn7fv7h2-ZTdfn548VmfVm1ssap8gYa03XCNmBRWaASHTYgamGt6j2BANkYSb3QSKa3rbUGUaIR1Fu7qs_Y68Pe2xTvZsqT24Xc0jD4keKcndJWl1Ptf0HURd9YWcBXD8BtnNNYjnAooVbSSIGFEgeqTTHnRL27TWHn071DcHsj3NYdjHB7IxzUJXUZe3lcPjc76v4OHT9fgLcHgMrTfgVKLreBxpa6kKidXBfDvxX-AHOil_8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503658541</pqid></control><display><type>article</type><title>A Role for Nr-CAM in the Patterning of Binocular Visual Pathways</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Williams, Scott E. ; Grumet, Martin ; Colman, David R. ; Henkemeyer, Mark ; Mason, Carol A. ; Sakurai, Takeshi</creator><creatorcontrib>Williams, Scott E. ; Grumet, Martin ; Colman, David R. ; Henkemeyer, Mark ; Mason, Carol A. ; Sakurai, Takeshi</creatorcontrib><description>Retinal ganglion cell (RGC) axons diverge within the optic chiasm to project to opposite sides of the brain. In mouse, contralateral RGCs are distributed throughout the retina, whereas ipsilateral RGCs are restricted to the ventrotemporal crescent (VTC). While repulsive guidance mechanisms play a major role in the formation of the ipsilateral projection, little is known about the contribution of growth-promoting interactions to the formation of binocular visual projections. Here, we show that the cell adhesion molecule Nr-CAM is expressed by RGCs that project contralaterally and is critical for the guidance of late-born RGCs within the VTC. Blocking Nr-CAM function causes an increase in the size of the ipsilateral projection and reduces neurite outgrowth on chiasm cells in an age- and region-specific manner. Finally, we demonstrate that EphB1/ephrin-B2-mediated repulsion and Nr-CAM-mediated attraction comprise distinct molecular programs that each contributes to the proper formation of binocular visual pathways.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2006.03.037</identifier><identifier>PMID: 16701205</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cell adhesion &amp; migration ; Cell Adhesion Molecules, Neuron-Glia - genetics ; Cell Adhesion Molecules, Neuron-Glia - metabolism ; CELLBIO ; DEVBIO ; Functional Laterality ; Immunohistochemistry ; In Situ Hybridization ; Medical research ; Mice ; Mice, Knockout ; Mice, Transgenic ; MOLNEURO ; Optic Chiasm - embryology ; Optic Chiasm - growth &amp; development ; Retina ; Retinal Ganglion Cells - metabolism ; Rodents ; Spinal cord ; Vision, Binocular - physiology ; Visual Pathways - embryology ; Visual Pathways - growth &amp; development ; Visual Pathways - metabolism</subject><ispartof>Neuron (Cambridge, Mass.), 2006-05, Vol.50 (4), p.535-547</ispartof><rights>2006 Elsevier Inc.</rights><rights>Copyright Elsevier Limited May 18, 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-a80b8dd49b091690e0e0d1b0434996fae0405b85ef471e8f9c998115184ef9923</citedby><cites>FETCH-LOGICAL-c531t-a80b8dd49b091690e0e0d1b0434996fae0405b85ef471e8f9c998115184ef9923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2006.03.037$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16701205$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, Scott E.</creatorcontrib><creatorcontrib>Grumet, Martin</creatorcontrib><creatorcontrib>Colman, David R.</creatorcontrib><creatorcontrib>Henkemeyer, Mark</creatorcontrib><creatorcontrib>Mason, Carol A.</creatorcontrib><creatorcontrib>Sakurai, Takeshi</creatorcontrib><title>A Role for Nr-CAM in the Patterning of Binocular Visual Pathways</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Retinal ganglion cell (RGC) axons diverge within the optic chiasm to project to opposite sides of the brain. In mouse, contralateral RGCs are distributed throughout the retina, whereas ipsilateral RGCs are restricted to the ventrotemporal crescent (VTC). While repulsive guidance mechanisms play a major role in the formation of the ipsilateral projection, little is known about the contribution of growth-promoting interactions to the formation of binocular visual projections. Here, we show that the cell adhesion molecule Nr-CAM is expressed by RGCs that project contralaterally and is critical for the guidance of late-born RGCs within the VTC. Blocking Nr-CAM function causes an increase in the size of the ipsilateral projection and reduces neurite outgrowth on chiasm cells in an age- and region-specific manner. Finally, we demonstrate that EphB1/ephrin-B2-mediated repulsion and Nr-CAM-mediated attraction comprise distinct molecular programs that each contributes to the proper formation of binocular visual pathways.</description><subject>Animals</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Adhesion Molecules, Neuron-Glia - genetics</subject><subject>Cell Adhesion Molecules, Neuron-Glia - metabolism</subject><subject>CELLBIO</subject><subject>DEVBIO</subject><subject>Functional Laterality</subject><subject>Immunohistochemistry</subject><subject>In Situ Hybridization</subject><subject>Medical research</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>MOLNEURO</subject><subject>Optic Chiasm - embryology</subject><subject>Optic Chiasm - growth &amp; development</subject><subject>Retina</subject><subject>Retinal Ganglion Cells - metabolism</subject><subject>Rodents</subject><subject>Spinal cord</subject><subject>Vision, Binocular - physiology</subject><subject>Visual Pathways - embryology</subject><subject>Visual Pathways - growth &amp; development</subject><subject>Visual Pathways - metabolism</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1rFEEQhhtRzCb6D0QaBG-zVu3050VcF6OBJIqo16Znpsb0MjuddM8o-ff2sgtCDkoV1KGeqpeql7EXCEsEVG-2y5HmFMflCkAtoS6pH7EFgtWVQGsfswUYqyq10vUJO815C4BCWnzKTlBpwBXIBXu35l_jQLyPiV-narO-4mHk0w3xL36aKI1h_Mljz9-HMbbz4BP_EfLsh3375re_z8_Yk94PmZ4f6xn7fv7h2-ZTdfn548VmfVm1ssap8gYa03XCNmBRWaASHTYgamGt6j2BANkYSb3QSKa3rbUGUaIR1Fu7qs_Y68Pe2xTvZsqT24Xc0jD4keKcndJWl1Ptf0HURd9YWcBXD8BtnNNYjnAooVbSSIGFEgeqTTHnRL27TWHn071DcHsj3NYdjHB7IxzUJXUZe3lcPjc76v4OHT9fgLcHgMrTfgVKLreBxpa6kKidXBfDvxX-AHOil_8</recordid><startdate>20060518</startdate><enddate>20060518</enddate><creator>Williams, Scott E.</creator><creator>Grumet, Martin</creator><creator>Colman, David R.</creator><creator>Henkemeyer, Mark</creator><creator>Mason, Carol A.</creator><creator>Sakurai, Takeshi</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060518</creationdate><title>A Role for Nr-CAM in the Patterning of Binocular Visual Pathways</title><author>Williams, Scott E. ; Grumet, Martin ; Colman, David R. ; Henkemeyer, Mark ; Mason, Carol A. ; Sakurai, Takeshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-a80b8dd49b091690e0e0d1b0434996fae0405b85ef471e8f9c998115184ef9923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Adhesion Molecules, Neuron-Glia - genetics</topic><topic>Cell Adhesion Molecules, Neuron-Glia - metabolism</topic><topic>CELLBIO</topic><topic>DEVBIO</topic><topic>Functional Laterality</topic><topic>Immunohistochemistry</topic><topic>In Situ Hybridization</topic><topic>Medical research</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>MOLNEURO</topic><topic>Optic Chiasm - embryology</topic><topic>Optic Chiasm - growth &amp; development</topic><topic>Retina</topic><topic>Retinal Ganglion Cells - metabolism</topic><topic>Rodents</topic><topic>Spinal cord</topic><topic>Vision, Binocular - physiology</topic><topic>Visual Pathways - embryology</topic><topic>Visual Pathways - growth &amp; development</topic><topic>Visual Pathways - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, Scott E.</creatorcontrib><creatorcontrib>Grumet, Martin</creatorcontrib><creatorcontrib>Colman, David R.</creatorcontrib><creatorcontrib>Henkemeyer, Mark</creatorcontrib><creatorcontrib>Mason, Carol A.</creatorcontrib><creatorcontrib>Sakurai, Takeshi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, Scott E.</au><au>Grumet, Martin</au><au>Colman, David R.</au><au>Henkemeyer, Mark</au><au>Mason, Carol A.</au><au>Sakurai, Takeshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Role for Nr-CAM in the Patterning of Binocular Visual Pathways</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2006-05-18</date><risdate>2006</risdate><volume>50</volume><issue>4</issue><spage>535</spage><epage>547</epage><pages>535-547</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Retinal ganglion cell (RGC) axons diverge within the optic chiasm to project to opposite sides of the brain. In mouse, contralateral RGCs are distributed throughout the retina, whereas ipsilateral RGCs are restricted to the ventrotemporal crescent (VTC). While repulsive guidance mechanisms play a major role in the formation of the ipsilateral projection, little is known about the contribution of growth-promoting interactions to the formation of binocular visual projections. Here, we show that the cell adhesion molecule Nr-CAM is expressed by RGCs that project contralaterally and is critical for the guidance of late-born RGCs within the VTC. Blocking Nr-CAM function causes an increase in the size of the ipsilateral projection and reduces neurite outgrowth on chiasm cells in an age- and region-specific manner. Finally, we demonstrate that EphB1/ephrin-B2-mediated repulsion and Nr-CAM-mediated attraction comprise distinct molecular programs that each contributes to the proper formation of binocular visual pathways.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16701205</pmid><doi>10.1016/j.neuron.2006.03.037</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2006-05, Vol.50 (4), p.535-547
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_miscellaneous_67976279
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Animals
Cell adhesion & migration
Cell Adhesion Molecules, Neuron-Glia - genetics
Cell Adhesion Molecules, Neuron-Glia - metabolism
CELLBIO
DEVBIO
Functional Laterality
Immunohistochemistry
In Situ Hybridization
Medical research
Mice
Mice, Knockout
Mice, Transgenic
MOLNEURO
Optic Chiasm - embryology
Optic Chiasm - growth & development
Retina
Retinal Ganglion Cells - metabolism
Rodents
Spinal cord
Vision, Binocular - physiology
Visual Pathways - embryology
Visual Pathways - growth & development
Visual Pathways - metabolism
title A Role for Nr-CAM in the Patterning of Binocular Visual Pathways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Role%20for%20Nr-CAM%20in%20the%20Patterning%20of%20Binocular%20Visual%20Pathways&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Williams,%20Scott%20E.&rft.date=2006-05-18&rft.volume=50&rft.issue=4&rft.spage=535&rft.epage=547&rft.pages=535-547&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2006.03.037&rft_dat=%3Cproquest_cross%3E67976279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503658541&rft_id=info:pmid/16701205&rft_els_id=S0896627306002637&rfr_iscdi=true