Sterically Locked Synthetic Bilin Derivatives and Phytochrome Agp1 from Agrobacterium tumefaciens Form Photoinsensitive Pr- and Pfr-like Adducts
Phytochrome photoreceptors undergo reversible photoconversion between the red-absorbing form, Pr, and the far-red-absorbing form, Pfr. The first step in the conversion from Pr to Pfr is a Z to E isomerization around the C15=C16 double bond of the bilin chromophore. We prepared four synthetic biliver...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2005-07, Vol.280 (26), p.24491-24497 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24497 |
---|---|
container_issue | 26 |
container_start_page | 24491 |
container_title | The Journal of biological chemistry |
container_volume | 280 |
creator | Inomata, Katsuhiko Hammam, Mostafa A.S. Kinoshita, Hideki Murata, Yasue Khawn, Htoi Noack, Steffi Michael, Norbert Lamparter, Tilman |
description | Phytochrome photoreceptors undergo reversible photoconversion between the red-absorbing form, Pr, and the far-red-absorbing form, Pfr. The first step in the conversion from Pr to Pfr is a Z to E isomerization around the C15=C16 double bond of the bilin chromophore. We prepared four synthetic biliverdin (BV) derivatives in which rings C and D are sterically locked by cyclizing with an additional carbon chain. In these chromophores, which are termed 15Za, 15Zs, 15Ea, and 15Es, the C15=C16 double bond is in either the Z or E configuration and the C14–C15 single bond in either the syn or anti conformation. The chromophores were assembled with Agrobacterium phytochrome Agp1, which incorporates BV as natural chromophore. All locked BV derivatives bound covalently to the protein and formed adducts with characteristic spectral properties. The 15Za adduct was spectrally similar to the Pr form and the 15Ea adduct similar to the Pfr form of the BV adduct. Thus, the chromophore of Agp1 adopts a C15=C16 Z configuration and a C14–C15 anti conformation in the Pr form and a C15=C16 E configuration and a C14–C15 anti conformation in the Pfr form. Both the 15Zs and the 15Es adducts absorbed only in the blue region of the visible spectra. All chromophore adducts were analyzed by size exclusion chromatography and histidine kinase activity to probe for protein conformation. In either case, the 15Za adduct behaved like the Pr and the 15Ea adduct like the Pfr form of Agp1. Replacing the natural chromophore by a locked 15Ea derivative can thus bring phytochrome holoprotein in the Pfr form in darkness. In this way, physiological action of Pfr can be studied in vivo and separated from Pr/Pfr cycling and other light effects. |
doi_str_mv | 10.1074/jbc.M504710200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67974678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820655934</els_id><sourcerecordid>17546533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-1149e0cb8016dd8754e6c2727b698adbcace28e7b89353eb0dfdbd7cd43a0de3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS1ERYeWLUvkBWKXwXYedpalpYA0VSu1C3aWHzeN2yQebGfQ_At-Mh5lpK4Q3vjK-s651jkIvadkTQmvPj9ps76pScUpYYS8QitKRFmUNf35Gq0IYbRoWS1O0dsYn0g-VUvfoFNaCy4EZyv05z5BcEYNwx5vvHkGi-_3U-ohOYO_uMFN-CoDO5XcDiJWk8V3_T550wc_Ar543FLc5TFPwWtlDm7ziNM8QqeMgyniax_GLPLJuynmB3ewwnehWNy6UAzuOVtZO5sUz9FJp4YI7473GXq4_vpw-b3Y3H77cXmxKUxNRCoorVogRgtCG2sFrytoDOOM66YVymqjDDABXIu2rEvQxHZWW25sVSpioTxDnxbbbfC_ZohJji4aGAY1gZ-jbHjLq4aL_4I0r27qsszgegFN8DEG6OQ2uFGFvaREHrqSuSv50lUWfDg6z3oE-4Ify8nAxwXo3WP_2wWQ2uXgYZRMEMkayapcZ8bEgkGOa-cgyHgI3oDNEpOk9e5fX_gLNxKxXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17546533</pqid></control><display><type>article</type><title>Sterically Locked Synthetic Bilin Derivatives and Phytochrome Agp1 from Agrobacterium tumefaciens Form Photoinsensitive Pr- and Pfr-like Adducts</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Inomata, Katsuhiko ; Hammam, Mostafa A.S. ; Kinoshita, Hideki ; Murata, Yasue ; Khawn, Htoi ; Noack, Steffi ; Michael, Norbert ; Lamparter, Tilman</creator><creatorcontrib>Inomata, Katsuhiko ; Hammam, Mostafa A.S. ; Kinoshita, Hideki ; Murata, Yasue ; Khawn, Htoi ; Noack, Steffi ; Michael, Norbert ; Lamparter, Tilman</creatorcontrib><description>Phytochrome photoreceptors undergo reversible photoconversion between the red-absorbing form, Pr, and the far-red-absorbing form, Pfr. The first step in the conversion from Pr to Pfr is a Z to E isomerization around the C15=C16 double bond of the bilin chromophore. We prepared four synthetic biliverdin (BV) derivatives in which rings C and D are sterically locked by cyclizing with an additional carbon chain. In these chromophores, which are termed 15Za, 15Zs, 15Ea, and 15Es, the C15=C16 double bond is in either the Z or E configuration and the C14–C15 single bond in either the syn or anti conformation. The chromophores were assembled with Agrobacterium phytochrome Agp1, which incorporates BV as natural chromophore. All locked BV derivatives bound covalently to the protein and formed adducts with characteristic spectral properties. The 15Za adduct was spectrally similar to the Pr form and the 15Ea adduct similar to the Pfr form of the BV adduct. Thus, the chromophore of Agp1 adopts a C15=C16 Z configuration and a C14–C15 anti conformation in the Pr form and a C15=C16 E configuration and a C14–C15 anti conformation in the Pfr form. Both the 15Zs and the 15Es adducts absorbed only in the blue region of the visible spectra. All chromophore adducts were analyzed by size exclusion chromatography and histidine kinase activity to probe for protein conformation. In either case, the 15Za adduct behaved like the Pr and the 15Ea adduct like the Pfr form of Agp1. Replacing the natural chromophore by a locked 15Ea derivative can thus bring phytochrome holoprotein in the Pfr form in darkness. In this way, physiological action of Pfr can be studied in vivo and separated from Pr/Pfr cycling and other light effects.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M504710200</identifier><identifier>PMID: 15878872</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Agrobacterium tumefaciens ; Agrobacterium tumefaciens - metabolism ; Bacterial Proteins - chemistry ; Bile Pigments - chemistry ; Biliverdine - chemistry ; Carbon - chemistry ; Chromatography ; Escherichia coli - metabolism ; Histidine Kinase ; Light-Harvesting Protein Complexes - chemistry ; Models, Chemical ; Molecular Conformation ; Phosphorylation ; Protein Binding ; Protein Kinases - chemistry ; Sodium Dodecyl Sulfate ; Spectrophotometry ; Ultraviolet Rays</subject><ispartof>The Journal of biological chemistry, 2005-07, Vol.280 (26), p.24491-24497</ispartof><rights>2005 © 2005 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-1149e0cb8016dd8754e6c2727b698adbcace28e7b89353eb0dfdbd7cd43a0de3</citedby><cites>FETCH-LOGICAL-c508t-1149e0cb8016dd8754e6c2727b698adbcace28e7b89353eb0dfdbd7cd43a0de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15878872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Inomata, Katsuhiko</creatorcontrib><creatorcontrib>Hammam, Mostafa A.S.</creatorcontrib><creatorcontrib>Kinoshita, Hideki</creatorcontrib><creatorcontrib>Murata, Yasue</creatorcontrib><creatorcontrib>Khawn, Htoi</creatorcontrib><creatorcontrib>Noack, Steffi</creatorcontrib><creatorcontrib>Michael, Norbert</creatorcontrib><creatorcontrib>Lamparter, Tilman</creatorcontrib><title>Sterically Locked Synthetic Bilin Derivatives and Phytochrome Agp1 from Agrobacterium tumefaciens Form Photoinsensitive Pr- and Pfr-like Adducts</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Phytochrome photoreceptors undergo reversible photoconversion between the red-absorbing form, Pr, and the far-red-absorbing form, Pfr. The first step in the conversion from Pr to Pfr is a Z to E isomerization around the C15=C16 double bond of the bilin chromophore. We prepared four synthetic biliverdin (BV) derivatives in which rings C and D are sterically locked by cyclizing with an additional carbon chain. In these chromophores, which are termed 15Za, 15Zs, 15Ea, and 15Es, the C15=C16 double bond is in either the Z or E configuration and the C14–C15 single bond in either the syn or anti conformation. The chromophores were assembled with Agrobacterium phytochrome Agp1, which incorporates BV as natural chromophore. All locked BV derivatives bound covalently to the protein and formed adducts with characteristic spectral properties. The 15Za adduct was spectrally similar to the Pr form and the 15Ea adduct similar to the Pfr form of the BV adduct. Thus, the chromophore of Agp1 adopts a C15=C16 Z configuration and a C14–C15 anti conformation in the Pr form and a C15=C16 E configuration and a C14–C15 anti conformation in the Pfr form. Both the 15Zs and the 15Es adducts absorbed only in the blue region of the visible spectra. All chromophore adducts were analyzed by size exclusion chromatography and histidine kinase activity to probe for protein conformation. In either case, the 15Za adduct behaved like the Pr and the 15Ea adduct like the Pfr form of Agp1. Replacing the natural chromophore by a locked 15Ea derivative can thus bring phytochrome holoprotein in the Pfr form in darkness. In this way, physiological action of Pfr can be studied in vivo and separated from Pr/Pfr cycling and other light effects.</description><subject>Agrobacterium tumefaciens</subject><subject>Agrobacterium tumefaciens - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bile Pigments - chemistry</subject><subject>Biliverdine - chemistry</subject><subject>Carbon - chemistry</subject><subject>Chromatography</subject><subject>Escherichia coli - metabolism</subject><subject>Histidine Kinase</subject><subject>Light-Harvesting Protein Complexes - chemistry</subject><subject>Models, Chemical</subject><subject>Molecular Conformation</subject><subject>Phosphorylation</subject><subject>Protein Binding</subject><subject>Protein Kinases - chemistry</subject><subject>Sodium Dodecyl Sulfate</subject><subject>Spectrophotometry</subject><subject>Ultraviolet Rays</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS1ERYeWLUvkBWKXwXYedpalpYA0VSu1C3aWHzeN2yQebGfQ_At-Mh5lpK4Q3vjK-s651jkIvadkTQmvPj9ps76pScUpYYS8QitKRFmUNf35Gq0IYbRoWS1O0dsYn0g-VUvfoFNaCy4EZyv05z5BcEYNwx5vvHkGi-_3U-ohOYO_uMFN-CoDO5XcDiJWk8V3_T550wc_Ar543FLc5TFPwWtlDm7ziNM8QqeMgyniax_GLPLJuynmB3ewwnehWNy6UAzuOVtZO5sUz9FJp4YI7473GXq4_vpw-b3Y3H77cXmxKUxNRCoorVogRgtCG2sFrytoDOOM66YVymqjDDABXIu2rEvQxHZWW25sVSpioTxDnxbbbfC_ZohJji4aGAY1gZ-jbHjLq4aL_4I0r27qsszgegFN8DEG6OQ2uFGFvaREHrqSuSv50lUWfDg6z3oE-4Ify8nAxwXo3WP_2wWQ2uXgYZRMEMkayapcZ8bEgkGOa-cgyHgI3oDNEpOk9e5fX_gLNxKxXw</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Inomata, Katsuhiko</creator><creator>Hammam, Mostafa A.S.</creator><creator>Kinoshita, Hideki</creator><creator>Murata, Yasue</creator><creator>Khawn, Htoi</creator><creator>Noack, Steffi</creator><creator>Michael, Norbert</creator><creator>Lamparter, Tilman</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20050701</creationdate><title>Sterically Locked Synthetic Bilin Derivatives and Phytochrome Agp1 from Agrobacterium tumefaciens Form Photoinsensitive Pr- and Pfr-like Adducts</title><author>Inomata, Katsuhiko ; Hammam, Mostafa A.S. ; Kinoshita, Hideki ; Murata, Yasue ; Khawn, Htoi ; Noack, Steffi ; Michael, Norbert ; Lamparter, Tilman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-1149e0cb8016dd8754e6c2727b698adbcace28e7b89353eb0dfdbd7cd43a0de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Agrobacterium tumefaciens</topic><topic>Agrobacterium tumefaciens - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bile Pigments - chemistry</topic><topic>Biliverdine - chemistry</topic><topic>Carbon - chemistry</topic><topic>Chromatography</topic><topic>Escherichia coli - metabolism</topic><topic>Histidine Kinase</topic><topic>Light-Harvesting Protein Complexes - chemistry</topic><topic>Models, Chemical</topic><topic>Molecular Conformation</topic><topic>Phosphorylation</topic><topic>Protein Binding</topic><topic>Protein Kinases - chemistry</topic><topic>Sodium Dodecyl Sulfate</topic><topic>Spectrophotometry</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inomata, Katsuhiko</creatorcontrib><creatorcontrib>Hammam, Mostafa A.S.</creatorcontrib><creatorcontrib>Kinoshita, Hideki</creatorcontrib><creatorcontrib>Murata, Yasue</creatorcontrib><creatorcontrib>Khawn, Htoi</creatorcontrib><creatorcontrib>Noack, Steffi</creatorcontrib><creatorcontrib>Michael, Norbert</creatorcontrib><creatorcontrib>Lamparter, Tilman</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inomata, Katsuhiko</au><au>Hammam, Mostafa A.S.</au><au>Kinoshita, Hideki</au><au>Murata, Yasue</au><au>Khawn, Htoi</au><au>Noack, Steffi</au><au>Michael, Norbert</au><au>Lamparter, Tilman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sterically Locked Synthetic Bilin Derivatives and Phytochrome Agp1 from Agrobacterium tumefaciens Form Photoinsensitive Pr- and Pfr-like Adducts</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2005-07-01</date><risdate>2005</risdate><volume>280</volume><issue>26</issue><spage>24491</spage><epage>24497</epage><pages>24491-24497</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Phytochrome photoreceptors undergo reversible photoconversion between the red-absorbing form, Pr, and the far-red-absorbing form, Pfr. The first step in the conversion from Pr to Pfr is a Z to E isomerization around the C15=C16 double bond of the bilin chromophore. We prepared four synthetic biliverdin (BV) derivatives in which rings C and D are sterically locked by cyclizing with an additional carbon chain. In these chromophores, which are termed 15Za, 15Zs, 15Ea, and 15Es, the C15=C16 double bond is in either the Z or E configuration and the C14–C15 single bond in either the syn or anti conformation. The chromophores were assembled with Agrobacterium phytochrome Agp1, which incorporates BV as natural chromophore. All locked BV derivatives bound covalently to the protein and formed adducts with characteristic spectral properties. The 15Za adduct was spectrally similar to the Pr form and the 15Ea adduct similar to the Pfr form of the BV adduct. Thus, the chromophore of Agp1 adopts a C15=C16 Z configuration and a C14–C15 anti conformation in the Pr form and a C15=C16 E configuration and a C14–C15 anti conformation in the Pfr form. Both the 15Zs and the 15Es adducts absorbed only in the blue region of the visible spectra. All chromophore adducts were analyzed by size exclusion chromatography and histidine kinase activity to probe for protein conformation. In either case, the 15Za adduct behaved like the Pr and the 15Ea adduct like the Pfr form of Agp1. Replacing the natural chromophore by a locked 15Ea derivative can thus bring phytochrome holoprotein in the Pfr form in darkness. In this way, physiological action of Pfr can be studied in vivo and separated from Pr/Pfr cycling and other light effects.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15878872</pmid><doi>10.1074/jbc.M504710200</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2005-07, Vol.280 (26), p.24491-24497 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_67974678 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Agrobacterium tumefaciens Agrobacterium tumefaciens - metabolism Bacterial Proteins - chemistry Bile Pigments - chemistry Biliverdine - chemistry Carbon - chemistry Chromatography Escherichia coli - metabolism Histidine Kinase Light-Harvesting Protein Complexes - chemistry Models, Chemical Molecular Conformation Phosphorylation Protein Binding Protein Kinases - chemistry Sodium Dodecyl Sulfate Spectrophotometry Ultraviolet Rays |
title | Sterically Locked Synthetic Bilin Derivatives and Phytochrome Agp1 from Agrobacterium tumefaciens Form Photoinsensitive Pr- and Pfr-like Adducts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A23%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sterically%20Locked%20Synthetic%20Bilin%20Derivatives%20and%20Phytochrome%20Agp1%20from%20Agrobacterium%20tumefaciens%20Form%20Photoinsensitive%20Pr-%20and%20Pfr-like%20Adducts&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Inomata,%20Katsuhiko&rft.date=2005-07-01&rft.volume=280&rft.issue=26&rft.spage=24491&rft.epage=24497&rft.pages=24491-24497&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M504710200&rft_dat=%3Cproquest_cross%3E17546533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17546533&rft_id=info:pmid/15878872&rft_els_id=S0021925820655934&rfr_iscdi=true |