Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load
The angled, lamellar structure of the annulus fibrosus is integral to its load-bearing function. Reorientation of this fiber structure with applied load may contribute to nonlinear mechanical behavior and to large increases in tensile modulus. Fiber reorientation has not yet been quantified for load...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2006-01, Vol.39 (8), p.1410-1418 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1418 |
---|---|
container_issue | 8 |
container_start_page | 1410 |
container_title | Journal of biomechanics |
container_volume | 39 |
creator | Guerin, Heather Anne L. Elliott, Dawn M. |
description | The angled, lamellar structure of the annulus fibrosus is integral to its load-bearing function. Reorientation of this fiber structure with applied load may contribute to nonlinear mechanical behavior and to large increases in tensile modulus. Fiber reorientation has not yet been quantified for loaded non-degenerated and degenerated annulus fibrosus tissue. The objective of this study was to measure fiber reorientation and mechanical properties (toe- and linear-region modulus, transition strain, and Poisson's ratio) of loaded outer annulus fibrosus tissue using a new application of FFT image processing techniques. This method was validated for quantification of annulus fiber reorientation during loading in this study. We hypothesized that annulus fibrosus fibers would reorient under circumferential tensile load, and that fiber reorientation would be affine. Additionally, we hypothesized that degeneration would affect fiber reorientation, toe-region modulus and Poisson's ratio. Annulus fibrosus fibers were found to reorient toward the loading direction, and degeneration significantly decreased fiber reorientation (the fiber reorientation parameter,
m
FFT=−1.70°/% strain for non-degenerated and −0.95°/% strain for degenerated tissue). Toe-region modulus was significantly correlated with age (
r
=
0
.
6). Paired
t-tests showed no significant difference in the fiber reorientation parameter calculated experimentally with that calculated using an affine prediction. Thus, an affine prediction is a good approximation of fiber reorientation. The findings of this study add to the understanding of overall disc mechanical behavior and degeneration. |
doi_str_mv | 10.1016/j.jbiomech.2005.04.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67973255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192900500182X</els_id><sourcerecordid>17166634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c544t-2b8c79a9e05106d4cdd87aa8000071728732d478c066696ee5c9826ae431648f3</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpaLZp_0IwFHqzO5L1Yd1a0k8I5JIcehJaadyVsaVUsgv999WyWwq95CSBnpnROw8h1xQ6ClS-m7ppH9KC7tAxANEB7wDUM7Kjg-pb1g_wnOwAGG0103BJXpYyQSW40i_IJRVaAOv7Hfn-EX9gxGzXkGJjxxHdWpr1gM0Y9pibjCkHjOvpPY3NYVtsBWPc5q0coZxKvWzRV3rFWMKMzZysf0UuRjsXfH0-r8jD50_3N1_b27sv324-3LZOcL62bD84pa1GEBSk5877QVk7wPG3VLEah3muBgdSSi0RhdMDkxZ5TyUfxv6KvD31fczp54ZlNUsoDufZRkxbMVLp2kKIJ0GqaB3R8wq--Q-c0pZjDWEo9FwzoRWrlDxRrm6gZBzNYw6Lzb8rZI6OzGT-OjJHRwa4qZlq4fW5_bZf0P8rO0upwPsTgHVtvwJmU1x14NCHXPUYn8JTM_4AmGalAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034925972</pqid></control><display><type>article</type><title>Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Guerin, Heather Anne L. ; Elliott, Dawn M.</creator><creatorcontrib>Guerin, Heather Anne L. ; Elliott, Dawn M.</creatorcontrib><description>The angled, lamellar structure of the annulus fibrosus is integral to its load-bearing function. Reorientation of this fiber structure with applied load may contribute to nonlinear mechanical behavior and to large increases in tensile modulus. Fiber reorientation has not yet been quantified for loaded non-degenerated and degenerated annulus fibrosus tissue. The objective of this study was to measure fiber reorientation and mechanical properties (toe- and linear-region modulus, transition strain, and Poisson's ratio) of loaded outer annulus fibrosus tissue using a new application of FFT image processing techniques. This method was validated for quantification of annulus fiber reorientation during loading in this study. We hypothesized that annulus fibrosus fibers would reorient under circumferential tensile load, and that fiber reorientation would be affine. Additionally, we hypothesized that degeneration would affect fiber reorientation, toe-region modulus and Poisson's ratio. Annulus fibrosus fibers were found to reorient toward the loading direction, and degeneration significantly decreased fiber reorientation (the fiber reorientation parameter,
m
FFT=−1.70°/% strain for non-degenerated and −0.95°/% strain for degenerated tissue). Toe-region modulus was significantly correlated with age (
r
=
0
.
6). Paired
t-tests showed no significant difference in the fiber reorientation parameter calculated experimentally with that calculated using an affine prediction. Thus, an affine prediction is a good approximation of fiber reorientation. The findings of this study add to the understanding of overall disc mechanical behavior and degeneration.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2005.04.007</identifier><identifier>PMID: 15950233</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Anisotropy ; Annulus fibrosus ; Compressive Strength ; Degeneration ; Fourier transforms ; Humans ; Image Processing, Computer-Assisted ; Intervertebral disc ; Intervertebral Disc - anatomy & histology ; Intervertebral Disc - physiology ; Load ; Mechanical properties ; Mechanics ; Models, Biological ; Spine ; Stress, Mechanical ; Structure ; Studies ; Weight-Bearing - physiology</subject><ispartof>Journal of biomechanics, 2006-01, Vol.39 (8), p.1410-1418</ispartof><rights>2005 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c544t-2b8c79a9e05106d4cdd87aa8000071728732d478c066696ee5c9826ae431648f3</citedby><cites>FETCH-LOGICAL-c544t-2b8c79a9e05106d4cdd87aa8000071728732d478c066696ee5c9826ae431648f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1034925972?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993,64383,64385,64387,72239</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15950233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guerin, Heather Anne L.</creatorcontrib><creatorcontrib>Elliott, Dawn M.</creatorcontrib><title>Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>The angled, lamellar structure of the annulus fibrosus is integral to its load-bearing function. Reorientation of this fiber structure with applied load may contribute to nonlinear mechanical behavior and to large increases in tensile modulus. Fiber reorientation has not yet been quantified for loaded non-degenerated and degenerated annulus fibrosus tissue. The objective of this study was to measure fiber reorientation and mechanical properties (toe- and linear-region modulus, transition strain, and Poisson's ratio) of loaded outer annulus fibrosus tissue using a new application of FFT image processing techniques. This method was validated for quantification of annulus fiber reorientation during loading in this study. We hypothesized that annulus fibrosus fibers would reorient under circumferential tensile load, and that fiber reorientation would be affine. Additionally, we hypothesized that degeneration would affect fiber reorientation, toe-region modulus and Poisson's ratio. Annulus fibrosus fibers were found to reorient toward the loading direction, and degeneration significantly decreased fiber reorientation (the fiber reorientation parameter,
m
FFT=−1.70°/% strain for non-degenerated and −0.95°/% strain for degenerated tissue). Toe-region modulus was significantly correlated with age (
r
=
0
.
6). Paired
t-tests showed no significant difference in the fiber reorientation parameter calculated experimentally with that calculated using an affine prediction. Thus, an affine prediction is a good approximation of fiber reorientation. The findings of this study add to the understanding of overall disc mechanical behavior and degeneration.</description><subject>Anisotropy</subject><subject>Annulus fibrosus</subject><subject>Compressive Strength</subject><subject>Degeneration</subject><subject>Fourier transforms</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Intervertebral disc</subject><subject>Intervertebral Disc - anatomy & histology</subject><subject>Intervertebral Disc - physiology</subject><subject>Load</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Models, Biological</subject><subject>Spine</subject><subject>Stress, Mechanical</subject><subject>Structure</subject><subject>Studies</subject><subject>Weight-Bearing - physiology</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1r3DAQhkVpaLZp_0IwFHqzO5L1Yd1a0k8I5JIcehJaadyVsaVUsgv999WyWwq95CSBnpnROw8h1xQ6ClS-m7ppH9KC7tAxANEB7wDUM7Kjg-pb1g_wnOwAGG0103BJXpYyQSW40i_IJRVaAOv7Hfn-EX9gxGzXkGJjxxHdWpr1gM0Y9pibjCkHjOvpPY3NYVtsBWPc5q0coZxKvWzRV3rFWMKMzZysf0UuRjsXfH0-r8jD50_3N1_b27sv324-3LZOcL62bD84pa1GEBSk5877QVk7wPG3VLEah3muBgdSSi0RhdMDkxZ5TyUfxv6KvD31fczp54ZlNUsoDufZRkxbMVLp2kKIJ0GqaB3R8wq--Q-c0pZjDWEo9FwzoRWrlDxRrm6gZBzNYw6Lzb8rZI6OzGT-OjJHRwa4qZlq4fW5_bZf0P8rO0upwPsTgHVtvwJmU1x14NCHXPUYn8JTM_4AmGalAw</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Guerin, Heather Anne L.</creator><creator>Elliott, Dawn M.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20060101</creationdate><title>Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load</title><author>Guerin, Heather Anne L. ; Elliott, Dawn M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c544t-2b8c79a9e05106d4cdd87aa8000071728732d478c066696ee5c9826ae431648f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Anisotropy</topic><topic>Annulus fibrosus</topic><topic>Compressive Strength</topic><topic>Degeneration</topic><topic>Fourier transforms</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Intervertebral disc</topic><topic>Intervertebral Disc - anatomy & histology</topic><topic>Intervertebral Disc - physiology</topic><topic>Load</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Models, Biological</topic><topic>Spine</topic><topic>Stress, Mechanical</topic><topic>Structure</topic><topic>Studies</topic><topic>Weight-Bearing - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guerin, Heather Anne L.</creatorcontrib><creatorcontrib>Elliott, Dawn M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guerin, Heather Anne L.</au><au>Elliott, Dawn M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2006-01-01</date><risdate>2006</risdate><volume>39</volume><issue>8</issue><spage>1410</spage><epage>1418</epage><pages>1410-1418</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>The angled, lamellar structure of the annulus fibrosus is integral to its load-bearing function. Reorientation of this fiber structure with applied load may contribute to nonlinear mechanical behavior and to large increases in tensile modulus. Fiber reorientation has not yet been quantified for loaded non-degenerated and degenerated annulus fibrosus tissue. The objective of this study was to measure fiber reorientation and mechanical properties (toe- and linear-region modulus, transition strain, and Poisson's ratio) of loaded outer annulus fibrosus tissue using a new application of FFT image processing techniques. This method was validated for quantification of annulus fiber reorientation during loading in this study. We hypothesized that annulus fibrosus fibers would reorient under circumferential tensile load, and that fiber reorientation would be affine. Additionally, we hypothesized that degeneration would affect fiber reorientation, toe-region modulus and Poisson's ratio. Annulus fibrosus fibers were found to reorient toward the loading direction, and degeneration significantly decreased fiber reorientation (the fiber reorientation parameter,
m
FFT=−1.70°/% strain for non-degenerated and −0.95°/% strain for degenerated tissue). Toe-region modulus was significantly correlated with age (
r
=
0
.
6). Paired
t-tests showed no significant difference in the fiber reorientation parameter calculated experimentally with that calculated using an affine prediction. Thus, an affine prediction is a good approximation of fiber reorientation. The findings of this study add to the understanding of overall disc mechanical behavior and degeneration.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>15950233</pmid><doi>10.1016/j.jbiomech.2005.04.007</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9290 |
ispartof | Journal of biomechanics, 2006-01, Vol.39 (8), p.1410-1418 |
issn | 0021-9290 1873-2380 |
language | eng |
recordid | cdi_proquest_miscellaneous_67973255 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland |
subjects | Anisotropy Annulus fibrosus Compressive Strength Degeneration Fourier transforms Humans Image Processing, Computer-Assisted Intervertebral disc Intervertebral Disc - anatomy & histology Intervertebral Disc - physiology Load Mechanical properties Mechanics Models, Biological Spine Stress, Mechanical Structure Studies Weight-Bearing - physiology |
title | Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A26%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degeneration%20affects%20the%20fiber%20reorientation%20of%20human%20annulus%20fibrosus%20under%20tensile%20load&rft.jtitle=Journal%20of%20biomechanics&rft.au=Guerin,%20Heather%20Anne%20L.&rft.date=2006-01-01&rft.volume=39&rft.issue=8&rft.spage=1410&rft.epage=1418&rft.pages=1410-1418&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2005.04.007&rft_dat=%3Cproquest_cross%3E17166634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034925972&rft_id=info:pmid/15950233&rft_els_id=S002192900500182X&rfr_iscdi=true |