Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load

The angled, lamellar structure of the annulus fibrosus is integral to its load-bearing function. Reorientation of this fiber structure with applied load may contribute to nonlinear mechanical behavior and to large increases in tensile modulus. Fiber reorientation has not yet been quantified for load...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2006-01, Vol.39 (8), p.1410-1418
Hauptverfasser: Guerin, Heather Anne L., Elliott, Dawn M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1418
container_issue 8
container_start_page 1410
container_title Journal of biomechanics
container_volume 39
creator Guerin, Heather Anne L.
Elliott, Dawn M.
description The angled, lamellar structure of the annulus fibrosus is integral to its load-bearing function. Reorientation of this fiber structure with applied load may contribute to nonlinear mechanical behavior and to large increases in tensile modulus. Fiber reorientation has not yet been quantified for loaded non-degenerated and degenerated annulus fibrosus tissue. The objective of this study was to measure fiber reorientation and mechanical properties (toe- and linear-region modulus, transition strain, and Poisson's ratio) of loaded outer annulus fibrosus tissue using a new application of FFT image processing techniques. This method was validated for quantification of annulus fiber reorientation during loading in this study. We hypothesized that annulus fibrosus fibers would reorient under circumferential tensile load, and that fiber reorientation would be affine. Additionally, we hypothesized that degeneration would affect fiber reorientation, toe-region modulus and Poisson's ratio. Annulus fibrosus fibers were found to reorient toward the loading direction, and degeneration significantly decreased fiber reorientation (the fiber reorientation parameter, m FFT=−1.70°/% strain for non-degenerated and −0.95°/% strain for degenerated tissue). Toe-region modulus was significantly correlated with age ( r = 0 . 6). Paired t-tests showed no significant difference in the fiber reorientation parameter calculated experimentally with that calculated using an affine prediction. Thus, an affine prediction is a good approximation of fiber reorientation. The findings of this study add to the understanding of overall disc mechanical behavior and degeneration.
doi_str_mv 10.1016/j.jbiomech.2005.04.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67973255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192900500182X</els_id><sourcerecordid>17166634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c544t-2b8c79a9e05106d4cdd87aa8000071728732d478c066696ee5c9826ae431648f3</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpaLZp_0IwFHqzO5L1Yd1a0k8I5JIcehJaadyVsaVUsgv999WyWwq95CSBnpnROw8h1xQ6ClS-m7ppH9KC7tAxANEB7wDUM7Kjg-pb1g_wnOwAGG0103BJXpYyQSW40i_IJRVaAOv7Hfn-EX9gxGzXkGJjxxHdWpr1gM0Y9pibjCkHjOvpPY3NYVtsBWPc5q0coZxKvWzRV3rFWMKMzZysf0UuRjsXfH0-r8jD50_3N1_b27sv324-3LZOcL62bD84pa1GEBSk5877QVk7wPG3VLEah3muBgdSSi0RhdMDkxZ5TyUfxv6KvD31fczp54ZlNUsoDufZRkxbMVLp2kKIJ0GqaB3R8wq--Q-c0pZjDWEo9FwzoRWrlDxRrm6gZBzNYw6Lzb8rZI6OzGT-OjJHRwa4qZlq4fW5_bZf0P8rO0upwPsTgHVtvwJmU1x14NCHXPUYn8JTM_4AmGalAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034925972</pqid></control><display><type>article</type><title>Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Guerin, Heather Anne L. ; Elliott, Dawn M.</creator><creatorcontrib>Guerin, Heather Anne L. ; Elliott, Dawn M.</creatorcontrib><description>The angled, lamellar structure of the annulus fibrosus is integral to its load-bearing function. Reorientation of this fiber structure with applied load may contribute to nonlinear mechanical behavior and to large increases in tensile modulus. Fiber reorientation has not yet been quantified for loaded non-degenerated and degenerated annulus fibrosus tissue. The objective of this study was to measure fiber reorientation and mechanical properties (toe- and linear-region modulus, transition strain, and Poisson's ratio) of loaded outer annulus fibrosus tissue using a new application of FFT image processing techniques. This method was validated for quantification of annulus fiber reorientation during loading in this study. We hypothesized that annulus fibrosus fibers would reorient under circumferential tensile load, and that fiber reorientation would be affine. Additionally, we hypothesized that degeneration would affect fiber reorientation, toe-region modulus and Poisson's ratio. Annulus fibrosus fibers were found to reorient toward the loading direction, and degeneration significantly decreased fiber reorientation (the fiber reorientation parameter, m FFT=−1.70°/% strain for non-degenerated and −0.95°/% strain for degenerated tissue). Toe-region modulus was significantly correlated with age ( r = 0 . 6). Paired t-tests showed no significant difference in the fiber reorientation parameter calculated experimentally with that calculated using an affine prediction. Thus, an affine prediction is a good approximation of fiber reorientation. The findings of this study add to the understanding of overall disc mechanical behavior and degeneration.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2005.04.007</identifier><identifier>PMID: 15950233</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Anisotropy ; Annulus fibrosus ; Compressive Strength ; Degeneration ; Fourier transforms ; Humans ; Image Processing, Computer-Assisted ; Intervertebral disc ; Intervertebral Disc - anatomy &amp; histology ; Intervertebral Disc - physiology ; Load ; Mechanical properties ; Mechanics ; Models, Biological ; Spine ; Stress, Mechanical ; Structure ; Studies ; Weight-Bearing - physiology</subject><ispartof>Journal of biomechanics, 2006-01, Vol.39 (8), p.1410-1418</ispartof><rights>2005 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c544t-2b8c79a9e05106d4cdd87aa8000071728732d478c066696ee5c9826ae431648f3</citedby><cites>FETCH-LOGICAL-c544t-2b8c79a9e05106d4cdd87aa8000071728732d478c066696ee5c9826ae431648f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1034925972?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993,64383,64385,64387,72239</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15950233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guerin, Heather Anne L.</creatorcontrib><creatorcontrib>Elliott, Dawn M.</creatorcontrib><title>Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>The angled, lamellar structure of the annulus fibrosus is integral to its load-bearing function. Reorientation of this fiber structure with applied load may contribute to nonlinear mechanical behavior and to large increases in tensile modulus. Fiber reorientation has not yet been quantified for loaded non-degenerated and degenerated annulus fibrosus tissue. The objective of this study was to measure fiber reorientation and mechanical properties (toe- and linear-region modulus, transition strain, and Poisson's ratio) of loaded outer annulus fibrosus tissue using a new application of FFT image processing techniques. This method was validated for quantification of annulus fiber reorientation during loading in this study. We hypothesized that annulus fibrosus fibers would reorient under circumferential tensile load, and that fiber reorientation would be affine. Additionally, we hypothesized that degeneration would affect fiber reorientation, toe-region modulus and Poisson's ratio. Annulus fibrosus fibers were found to reorient toward the loading direction, and degeneration significantly decreased fiber reorientation (the fiber reorientation parameter, m FFT=−1.70°/% strain for non-degenerated and −0.95°/% strain for degenerated tissue). Toe-region modulus was significantly correlated with age ( r = 0 . 6). Paired t-tests showed no significant difference in the fiber reorientation parameter calculated experimentally with that calculated using an affine prediction. Thus, an affine prediction is a good approximation of fiber reorientation. The findings of this study add to the understanding of overall disc mechanical behavior and degeneration.</description><subject>Anisotropy</subject><subject>Annulus fibrosus</subject><subject>Compressive Strength</subject><subject>Degeneration</subject><subject>Fourier transforms</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Intervertebral disc</subject><subject>Intervertebral Disc - anatomy &amp; histology</subject><subject>Intervertebral Disc - physiology</subject><subject>Load</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Models, Biological</subject><subject>Spine</subject><subject>Stress, Mechanical</subject><subject>Structure</subject><subject>Studies</subject><subject>Weight-Bearing - physiology</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1r3DAQhkVpaLZp_0IwFHqzO5L1Yd1a0k8I5JIcehJaadyVsaVUsgv999WyWwq95CSBnpnROw8h1xQ6ClS-m7ppH9KC7tAxANEB7wDUM7Kjg-pb1g_wnOwAGG0103BJXpYyQSW40i_IJRVaAOv7Hfn-EX9gxGzXkGJjxxHdWpr1gM0Y9pibjCkHjOvpPY3NYVtsBWPc5q0coZxKvWzRV3rFWMKMzZysf0UuRjsXfH0-r8jD50_3N1_b27sv324-3LZOcL62bD84pa1GEBSk5877QVk7wPG3VLEah3muBgdSSi0RhdMDkxZ5TyUfxv6KvD31fczp54ZlNUsoDufZRkxbMVLp2kKIJ0GqaB3R8wq--Q-c0pZjDWEo9FwzoRWrlDxRrm6gZBzNYw6Lzb8rZI6OzGT-OjJHRwa4qZlq4fW5_bZf0P8rO0upwPsTgHVtvwJmU1x14NCHXPUYn8JTM_4AmGalAw</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Guerin, Heather Anne L.</creator><creator>Elliott, Dawn M.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20060101</creationdate><title>Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load</title><author>Guerin, Heather Anne L. ; Elliott, Dawn M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c544t-2b8c79a9e05106d4cdd87aa8000071728732d478c066696ee5c9826ae431648f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Anisotropy</topic><topic>Annulus fibrosus</topic><topic>Compressive Strength</topic><topic>Degeneration</topic><topic>Fourier transforms</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Intervertebral disc</topic><topic>Intervertebral Disc - anatomy &amp; histology</topic><topic>Intervertebral Disc - physiology</topic><topic>Load</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Models, Biological</topic><topic>Spine</topic><topic>Stress, Mechanical</topic><topic>Structure</topic><topic>Studies</topic><topic>Weight-Bearing - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guerin, Heather Anne L.</creatorcontrib><creatorcontrib>Elliott, Dawn M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guerin, Heather Anne L.</au><au>Elliott, Dawn M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2006-01-01</date><risdate>2006</risdate><volume>39</volume><issue>8</issue><spage>1410</spage><epage>1418</epage><pages>1410-1418</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>The angled, lamellar structure of the annulus fibrosus is integral to its load-bearing function. Reorientation of this fiber structure with applied load may contribute to nonlinear mechanical behavior and to large increases in tensile modulus. Fiber reorientation has not yet been quantified for loaded non-degenerated and degenerated annulus fibrosus tissue. The objective of this study was to measure fiber reorientation and mechanical properties (toe- and linear-region modulus, transition strain, and Poisson's ratio) of loaded outer annulus fibrosus tissue using a new application of FFT image processing techniques. This method was validated for quantification of annulus fiber reorientation during loading in this study. We hypothesized that annulus fibrosus fibers would reorient under circumferential tensile load, and that fiber reorientation would be affine. Additionally, we hypothesized that degeneration would affect fiber reorientation, toe-region modulus and Poisson's ratio. Annulus fibrosus fibers were found to reorient toward the loading direction, and degeneration significantly decreased fiber reorientation (the fiber reorientation parameter, m FFT=−1.70°/% strain for non-degenerated and −0.95°/% strain for degenerated tissue). Toe-region modulus was significantly correlated with age ( r = 0 . 6). Paired t-tests showed no significant difference in the fiber reorientation parameter calculated experimentally with that calculated using an affine prediction. Thus, an affine prediction is a good approximation of fiber reorientation. The findings of this study add to the understanding of overall disc mechanical behavior and degeneration.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>15950233</pmid><doi>10.1016/j.jbiomech.2005.04.007</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2006-01, Vol.39 (8), p.1410-1418
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_67973255
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Anisotropy
Annulus fibrosus
Compressive Strength
Degeneration
Fourier transforms
Humans
Image Processing, Computer-Assisted
Intervertebral disc
Intervertebral Disc - anatomy & histology
Intervertebral Disc - physiology
Load
Mechanical properties
Mechanics
Models, Biological
Spine
Stress, Mechanical
Structure
Studies
Weight-Bearing - physiology
title Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A26%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degeneration%20affects%20the%20fiber%20reorientation%20of%20human%20annulus%20fibrosus%20under%20tensile%20load&rft.jtitle=Journal%20of%20biomechanics&rft.au=Guerin,%20Heather%20Anne%20L.&rft.date=2006-01-01&rft.volume=39&rft.issue=8&rft.spage=1410&rft.epage=1418&rft.pages=1410-1418&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2005.04.007&rft_dat=%3Cproquest_cross%3E17166634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034925972&rft_id=info:pmid/15950233&rft_els_id=S002192900500182X&rfr_iscdi=true