Visual learning by coevolutionary feature synthesis

In this paper, a novel genetically inspired visual learning method is proposed. Given the training raster images, this general approach induces a sophisticated feature-based recognition system. It employs the paradigm of cooperative coevolution to handle the computational difficulty of this task. To...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2005-06, Vol.35 (3), p.409-425
Hauptverfasser: Krawiec, K., Bhanu, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 425
container_issue 3
container_start_page 409
container_title IEEE transactions on cybernetics
container_volume 35
creator Krawiec, K.
Bhanu, B.
description In this paper, a novel genetically inspired visual learning method is proposed. Given the training raster images, this general approach induces a sophisticated feature-based recognition system. It employs the paradigm of cooperative coevolution to handle the computational difficulty of this task. To represent the feature extraction agents, the linear genetic programming is used. The paper describes the learning algorithm and provides a firm rationale for its design. Different architectures of recognition systems are considered that employ the proposed feature synthesis method. An extensive experimental evaluation on the demanding real-world task of object recognition in synthetic aperture radar (SAR) imagery shows the ability of the proposed approach to attain high recognition performance in different operating conditions.
doi_str_mv 10.1109/TSMCB.2005.846644
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_67961821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1430827</ieee_id><sourcerecordid>896213917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-2ba3916cd7cd07b6a3a595262d53b1e6fcaa16ea2e692d213059d9fc31f9a79b3</originalsourceid><addsrcrecordid>eNqFkcFq20AQhpeSUjtuH6AUisghPcmd2V3tao6JSZqCQw5xe11W0qiRkSVHKwX89pFrQyCH5LQD-_0_w3xCfEWYIwL9XN3fLi7nEiCZp9oYrT-IKZLGGDTJk3GGVMVaI03EaQhrACAg-0lMMCGLhDgV6m8VBl9HNfuuqZp_UbaL8paf2nroq7bx3S4q2fdDx1HYNf0Dhyp8Fh9LXwf-cnxn4s_11WpxEy_vfv1eXCzjPAHTxzLzitDkhc0LsJnxyieUSCOLRGXIpsy9R8NesiFZSFSQUEFlrrAkbylTM_Hj0Lvt2seBQ-82Vci5rn3D7RBcSmZMEdqRPH-TNJYMpiP8HigJ0oQI3gdTIIl633j2Cly3Q9eMd3GpscZqo_b74QHKuzaEjku37arNeFyH4PYq3X-Vbq_SHVSOme_H4iHbcPGSOLobgW8HoGLml2-tIJVWPQMjqaD5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867674637</pqid></control><display><type>article</type><title>Visual learning by coevolutionary feature synthesis</title><source>IEEE Electronic Library (IEL)</source><creator>Krawiec, K. ; Bhanu, B.</creator><creatorcontrib>Krawiec, K. ; Bhanu, B.</creatorcontrib><description>In this paper, a novel genetically inspired visual learning method is proposed. Given the training raster images, this general approach induces a sophisticated feature-based recognition system. It employs the paradigm of cooperative coevolution to handle the computational difficulty of this task. To represent the feature extraction agents, the linear genetic programming is used. The paper describes the learning algorithm and provides a firm rationale for its design. Different architectures of recognition systems are considered that employ the proposed feature synthesis method. An extensive experimental evaluation on the demanding real-world task of object recognition in synthetic aperture radar (SAR) imagery shows the ability of the proposed approach to attain high recognition performance in different operating conditions.</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2005.846644</identifier><identifier>PMID: 15971911</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Artificial Intelligence ; Automatic programming ; Cluster Analysis ; Computer architecture ; Feature extraction ; Feature recognition ; genetic algorithms ; Genetic programming ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image recognition ; Imaging, Three-Dimensional - methods ; Information Storage and Retrieval - methods ; Learning ; Learning systems ; Object recognition ; pattern recognition ; Pattern Recognition, Automated - methods ; Recognition ; Signal Processing, Computer-Assisted ; Subtraction Technique ; Synthesis ; Synthetic aperture radar ; Training data ; Visual</subject><ispartof>IEEE transactions on cybernetics, 2005-06, Vol.35 (3), p.409-425</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-2ba3916cd7cd07b6a3a595262d53b1e6fcaa16ea2e692d213059d9fc31f9a79b3</citedby><cites>FETCH-LOGICAL-c506t-2ba3916cd7cd07b6a3a595262d53b1e6fcaa16ea2e692d213059d9fc31f9a79b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1430827$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1430827$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15971911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krawiec, K.</creatorcontrib><creatorcontrib>Bhanu, B.</creatorcontrib><title>Visual learning by coevolutionary feature synthesis</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>In this paper, a novel genetically inspired visual learning method is proposed. Given the training raster images, this general approach induces a sophisticated feature-based recognition system. It employs the paradigm of cooperative coevolution to handle the computational difficulty of this task. To represent the feature extraction agents, the linear genetic programming is used. The paper describes the learning algorithm and provides a firm rationale for its design. Different architectures of recognition systems are considered that employ the proposed feature synthesis method. An extensive experimental evaluation on the demanding real-world task of object recognition in synthetic aperture radar (SAR) imagery shows the ability of the proposed approach to attain high recognition performance in different operating conditions.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Automatic programming</subject><subject>Cluster Analysis</subject><subject>Computer architecture</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>genetic algorithms</subject><subject>Genetic programming</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image recognition</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Object recognition</subject><subject>pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Recognition</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Subtraction Technique</subject><subject>Synthesis</subject><subject>Synthetic aperture radar</subject><subject>Training data</subject><subject>Visual</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkcFq20AQhpeSUjtuH6AUisghPcmd2V3tao6JSZqCQw5xe11W0qiRkSVHKwX89pFrQyCH5LQD-_0_w3xCfEWYIwL9XN3fLi7nEiCZp9oYrT-IKZLGGDTJk3GGVMVaI03EaQhrACAg-0lMMCGLhDgV6m8VBl9HNfuuqZp_UbaL8paf2nroq7bx3S4q2fdDx1HYNf0Dhyp8Fh9LXwf-cnxn4s_11WpxEy_vfv1eXCzjPAHTxzLzitDkhc0LsJnxyieUSCOLRGXIpsy9R8NesiFZSFSQUEFlrrAkbylTM_Hj0Lvt2seBQ-82Vci5rn3D7RBcSmZMEdqRPH-TNJYMpiP8HigJ0oQI3gdTIIl633j2Cly3Q9eMd3GpscZqo_b74QHKuzaEjku37arNeFyH4PYq3X-Vbq_SHVSOme_H4iHbcPGSOLobgW8HoGLml2-tIJVWPQMjqaD5</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Krawiec, K.</creator><creator>Bhanu, B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20050601</creationdate><title>Visual learning by coevolutionary feature synthesis</title><author>Krawiec, K. ; Bhanu, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-2ba3916cd7cd07b6a3a595262d53b1e6fcaa16ea2e692d213059d9fc31f9a79b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Automatic programming</topic><topic>Cluster Analysis</topic><topic>Computer architecture</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>genetic algorithms</topic><topic>Genetic programming</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image recognition</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Object recognition</topic><topic>pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Recognition</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Subtraction Technique</topic><topic>Synthesis</topic><topic>Synthetic aperture radar</topic><topic>Training data</topic><topic>Visual</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krawiec, K.</creatorcontrib><creatorcontrib>Bhanu, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krawiec, K.</au><au>Bhanu, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual learning by coevolutionary feature synthesis</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2005-06-01</date><risdate>2005</risdate><volume>35</volume><issue>3</issue><spage>409</spage><epage>425</epage><pages>409-425</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>In this paper, a novel genetically inspired visual learning method is proposed. Given the training raster images, this general approach induces a sophisticated feature-based recognition system. It employs the paradigm of cooperative coevolution to handle the computational difficulty of this task. To represent the feature extraction agents, the linear genetic programming is used. The paper describes the learning algorithm and provides a firm rationale for its design. Different architectures of recognition systems are considered that employ the proposed feature synthesis method. An extensive experimental evaluation on the demanding real-world task of object recognition in synthetic aperture radar (SAR) imagery shows the ability of the proposed approach to attain high recognition performance in different operating conditions.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>15971911</pmid><doi>10.1109/TSMCB.2005.846644</doi><tpages>17</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4419
ispartof IEEE transactions on cybernetics, 2005-06, Vol.35 (3), p.409-425
issn 1083-4419
2168-2267
1941-0492
2168-2275
language eng
recordid cdi_proquest_miscellaneous_67961821
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Artificial Intelligence
Automatic programming
Cluster Analysis
Computer architecture
Feature extraction
Feature recognition
genetic algorithms
Genetic programming
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image recognition
Imaging, Three-Dimensional - methods
Information Storage and Retrieval - methods
Learning
Learning systems
Object recognition
pattern recognition
Pattern Recognition, Automated - methods
Recognition
Signal Processing, Computer-Assisted
Subtraction Technique
Synthesis
Synthetic aperture radar
Training data
Visual
title Visual learning by coevolutionary feature synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20learning%20by%20coevolutionary%20feature%20synthesis&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Krawiec,%20K.&rft.date=2005-06-01&rft.volume=35&rft.issue=3&rft.spage=409&rft.epage=425&rft.pages=409-425&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2005.846644&rft_dat=%3Cproquest_RIE%3E896213917%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867674637&rft_id=info:pmid/15971911&rft_ieee_id=1430827&rfr_iscdi=true