Heat and Mass Transfer during the Cryopreservation of a Bioartificial Liver Device: A Computational Model

Bioartificial liver devices (BALs) have proven to be an effective bridge to transplantation for cases of acute liver failure. Enabling the long-term storage of these devices using a method such as cryopreservation will ensure their easy off the shelf availability. To date, cryopreservation of liver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ASAIO journal (1992) 2005-05, Vol.51 (3), p.184-193
Hauptverfasser: Balasubramanian, Saravana K, Coger, Robin N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 3
container_start_page 184
container_title ASAIO journal (1992)
container_volume 51
creator Balasubramanian, Saravana K
Coger, Robin N
description Bioartificial liver devices (BALs) have proven to be an effective bridge to transplantation for cases of acute liver failure. Enabling the long-term storage of these devices using a method such as cryopreservation will ensure their easy off the shelf availability. To date, cryopreservation of liver cells has been attempted for both single cells and sandwich cultures. This study presents the potential of using computational modeling to help develop a cryopreservation protocol for storing the three dimensional BALHepatassist. The focus is upon determining the thermal and concentration profiles as the BAL is cooled from 37°C–100°C, and is completed in two stepsa cryoprotectant loading step and a phase change step. The results indicate that, for the loading step, mass transfer controls the duration of the protocol, whereas for the phase change step, when mass transfer is assumed negligible, the latent heat released during freezing is the control factor. The cryoprotocol that is ultimately proposed considers time, cooling rate, and the temperature gradients that the cellular space is exposed to during cooling. To our knowledge, this study is the first reported effort toward designing an effective protocol for the cryopreservation of a three-dimensional BAL device.
doi_str_mv 10.1097/01.MAT.0000161079.35897.7D
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67957183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67957183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4143-48a2e7cf90b906aef7f73daf34f352e3c1f794fba264b51cfe56f5ecf2057dbd3</originalsourceid><addsrcrecordid>eNpFkEFv2yAUx9HUau26fYUJ9dCbXTBgTG9ZsrWVEvWSSrshjB8Lq2MysFP1248mkco78PT4_R_SD6FrSkpKlLwltFzN1iXJh9aUSFUy0ShZysUndEkFawrF2e-z3BPRFJWi9QX6ktLfjAvG6Gd0QYWqG8XrS-QfwIzYDB1emZTwOpohOYi4m6If_uBxA3ge38IuQoK4N6MPAw4OG_zDBxNH77z1psdLv8-hBey9hTs8w_Ow3U3jAc-vq9BB_xWdO9Mn-Ha6r9Dzr5_r-UOxfLp_nM-WheWUs4I3pgJpnSKtIrUBJ51knXGMOyYqYJY6qbhrTVXzVlDrQNROgHUVEbJrO3aFbo57dzH8myCNeuuThb43A4Qp6VoqIWnDMnh3BG0MKUVwehf91sQ3TYl-F60J1Vm0_hCtD6K1XOTw99MvU7uF7iN6MpsBfgReQz9CTC_99ApRb8D04-awsuINKSpCRC5CivcRY_8BQmuLFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67957183</pqid></control><display><type>article</type><title>Heat and Mass Transfer during the Cryopreservation of a Bioartificial Liver Device: A Computational Model</title><source>MEDLINE</source><source>Journals@Ovid LWW Legacy Archive</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Journals@Ovid Complete</source><creator>Balasubramanian, Saravana K ; Coger, Robin N</creator><creatorcontrib>Balasubramanian, Saravana K ; Coger, Robin N</creatorcontrib><description>Bioartificial liver devices (BALs) have proven to be an effective bridge to transplantation for cases of acute liver failure. Enabling the long-term storage of these devices using a method such as cryopreservation will ensure their easy off the shelf availability. To date, cryopreservation of liver cells has been attempted for both single cells and sandwich cultures. This study presents the potential of using computational modeling to help develop a cryopreservation protocol for storing the three dimensional BALHepatassist. The focus is upon determining the thermal and concentration profiles as the BAL is cooled from 37°C–100°C, and is completed in two stepsa cryoprotectant loading step and a phase change step. The results indicate that, for the loading step, mass transfer controls the duration of the protocol, whereas for the phase change step, when mass transfer is assumed negligible, the latent heat released during freezing is the control factor. The cryoprotocol that is ultimately proposed considers time, cooling rate, and the temperature gradients that the cellular space is exposed to during cooling. To our knowledge, this study is the first reported effort toward designing an effective protocol for the cryopreservation of a three-dimensional BAL device.</description><identifier>ISSN: 1058-2916</identifier><identifier>EISSN: 1538-943X</identifier><identifier>DOI: 10.1097/01.MAT.0000161079.35897.7D</identifier><identifier>PMID: 15968946</identifier><language>eng</language><publisher>United States: Copyright by the American Society for Artificial Internal Organs</publisher><subject>Computer Simulation ; Cryopreservation ; Hot Temperature ; Humans ; Liver, Artificial ; Models, Biological</subject><ispartof>ASAIO journal (1992), 2005-05, Vol.51 (3), p.184-193</ispartof><rights>Copyright © 2005 by the American Society for Artificial Internal Organs</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4143-48a2e7cf90b906aef7f73daf34f352e3c1f794fba264b51cfe56f5ecf2057dbd3</citedby><cites>FETCH-LOGICAL-c4143-48a2e7cf90b906aef7f73daf34f352e3c1f794fba264b51cfe56f5ecf2057dbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttp://ovidsp.ovid.com/ovidweb.cgi?T=JS&amp;NEWS=n&amp;CSC=Y&amp;PAGE=fulltext&amp;D=ovft&amp;AN=00002480-200505000-00003$$EHTML$$P50$$Gwolterskluwer$$H</linktohtml><link.rule.ids>314,776,780,4595,27901,27902,65206</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15968946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Balasubramanian, Saravana K</creatorcontrib><creatorcontrib>Coger, Robin N</creatorcontrib><title>Heat and Mass Transfer during the Cryopreservation of a Bioartificial Liver Device: A Computational Model</title><title>ASAIO journal (1992)</title><addtitle>ASAIO J</addtitle><description>Bioartificial liver devices (BALs) have proven to be an effective bridge to transplantation for cases of acute liver failure. Enabling the long-term storage of these devices using a method such as cryopreservation will ensure their easy off the shelf availability. To date, cryopreservation of liver cells has been attempted for both single cells and sandwich cultures. This study presents the potential of using computational modeling to help develop a cryopreservation protocol for storing the three dimensional BALHepatassist. The focus is upon determining the thermal and concentration profiles as the BAL is cooled from 37°C–100°C, and is completed in two stepsa cryoprotectant loading step and a phase change step. The results indicate that, for the loading step, mass transfer controls the duration of the protocol, whereas for the phase change step, when mass transfer is assumed negligible, the latent heat released during freezing is the control factor. The cryoprotocol that is ultimately proposed considers time, cooling rate, and the temperature gradients that the cellular space is exposed to during cooling. To our knowledge, this study is the first reported effort toward designing an effective protocol for the cryopreservation of a three-dimensional BAL device.</description><subject>Computer Simulation</subject><subject>Cryopreservation</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Liver, Artificial</subject><subject>Models, Biological</subject><issn>1058-2916</issn><issn>1538-943X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkEFv2yAUx9HUau26fYUJ9dCbXTBgTG9ZsrWVEvWSSrshjB8Lq2MysFP1248mkco78PT4_R_SD6FrSkpKlLwltFzN1iXJh9aUSFUy0ShZysUndEkFawrF2e-z3BPRFJWi9QX6ktLfjAvG6Gd0QYWqG8XrS-QfwIzYDB1emZTwOpohOYi4m6If_uBxA3ge38IuQoK4N6MPAw4OG_zDBxNH77z1psdLv8-hBey9hTs8w_Ow3U3jAc-vq9BB_xWdO9Mn-Ha6r9Dzr5_r-UOxfLp_nM-WheWUs4I3pgJpnSKtIrUBJ51knXGMOyYqYJY6qbhrTVXzVlDrQNROgHUVEbJrO3aFbo57dzH8myCNeuuThb43A4Qp6VoqIWnDMnh3BG0MKUVwehf91sQ3TYl-F60J1Vm0_hCtD6K1XOTw99MvU7uF7iN6MpsBfgReQz9CTC_99ApRb8D04-awsuINKSpCRC5CivcRY_8BQmuLFw</recordid><startdate>200505</startdate><enddate>200505</enddate><creator>Balasubramanian, Saravana K</creator><creator>Coger, Robin N</creator><general>Copyright by the American Society for Artificial Internal Organs</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200505</creationdate><title>Heat and Mass Transfer during the Cryopreservation of a Bioartificial Liver Device: A Computational Model</title><author>Balasubramanian, Saravana K ; Coger, Robin N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4143-48a2e7cf90b906aef7f73daf34f352e3c1f794fba264b51cfe56f5ecf2057dbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computer Simulation</topic><topic>Cryopreservation</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Liver, Artificial</topic><topic>Models, Biological</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balasubramanian, Saravana K</creatorcontrib><creatorcontrib>Coger, Robin N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ASAIO journal (1992)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balasubramanian, Saravana K</au><au>Coger, Robin N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat and Mass Transfer during the Cryopreservation of a Bioartificial Liver Device: A Computational Model</atitle><jtitle>ASAIO journal (1992)</jtitle><addtitle>ASAIO J</addtitle><date>2005-05</date><risdate>2005</risdate><volume>51</volume><issue>3</issue><spage>184</spage><epage>193</epage><pages>184-193</pages><issn>1058-2916</issn><eissn>1538-943X</eissn><abstract>Bioartificial liver devices (BALs) have proven to be an effective bridge to transplantation for cases of acute liver failure. Enabling the long-term storage of these devices using a method such as cryopreservation will ensure their easy off the shelf availability. To date, cryopreservation of liver cells has been attempted for both single cells and sandwich cultures. This study presents the potential of using computational modeling to help develop a cryopreservation protocol for storing the three dimensional BALHepatassist. The focus is upon determining the thermal and concentration profiles as the BAL is cooled from 37°C–100°C, and is completed in two stepsa cryoprotectant loading step and a phase change step. The results indicate that, for the loading step, mass transfer controls the duration of the protocol, whereas for the phase change step, when mass transfer is assumed negligible, the latent heat released during freezing is the control factor. The cryoprotocol that is ultimately proposed considers time, cooling rate, and the temperature gradients that the cellular space is exposed to during cooling. To our knowledge, this study is the first reported effort toward designing an effective protocol for the cryopreservation of a three-dimensional BAL device.</abstract><cop>United States</cop><pub>Copyright by the American Society for Artificial Internal Organs</pub><pmid>15968946</pmid><doi>10.1097/01.MAT.0000161079.35897.7D</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-2916
ispartof ASAIO journal (1992), 2005-05, Vol.51 (3), p.184-193
issn 1058-2916
1538-943X
language eng
recordid cdi_proquest_miscellaneous_67957183
source MEDLINE; Journals@Ovid LWW Legacy Archive; EZB-FREE-00999 freely available EZB journals; Journals@Ovid Complete
subjects Computer Simulation
Cryopreservation
Hot Temperature
Humans
Liver, Artificial
Models, Biological
title Heat and Mass Transfer during the Cryopreservation of a Bioartificial Liver Device: A Computational Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20and%20Mass%20Transfer%20during%20the%20Cryopreservation%20of%20a%20Bioartificial%20Liver%20Device:%20A%20Computational%20Model&rft.jtitle=ASAIO%20journal%20(1992)&rft.au=Balasubramanian,%20Saravana%20K&rft.date=2005-05&rft.volume=51&rft.issue=3&rft.spage=184&rft.epage=193&rft.pages=184-193&rft.issn=1058-2916&rft.eissn=1538-943X&rft_id=info:doi/10.1097/01.MAT.0000161079.35897.7D&rft_dat=%3Cproquest_cross%3E67957183%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67957183&rft_id=info:pmid/15968946&rfr_iscdi=true