In vitro responsiveness of human-drug-resistant tissue to antiepileptic drugs: Insights into the mechanisms of pharmacoresistance

Pharmacoresistance in epileptic patients may be ascribed to at least two, not mutually exclusive, mechanisms: a pharmacokinetic mechanism and a decreased sensitivity or availability of targets to antiepileptic drugs (AEDs; i.e., carbamazepine and phenytoin (CBZ, PHT)). Brain:plasma drug concentratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2006-05, Vol.1086 (1), p.201-213
Hauptverfasser: Oby, Emily, Caccia, Silvio, Vezzani, Annamaria, Moeddel, Gabriel, Hallene, Kerri, Guiso, Giovanna, Said, Tamer, Bingaman, William, Marchi, Nicola, Baumgartner, Christoph, Pirker, Susanne, Czech, Thomas, Lo Russo, Giorgio, Janigro, Damir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 213
container_issue 1
container_start_page 201
container_title Brain research
container_volume 1086
creator Oby, Emily
Caccia, Silvio
Vezzani, Annamaria
Moeddel, Gabriel
Hallene, Kerri
Guiso, Giovanna
Said, Tamer
Bingaman, William
Marchi, Nicola
Baumgartner, Christoph
Pirker, Susanne
Czech, Thomas
Lo Russo, Giorgio
Janigro, Damir
description Pharmacoresistance in epileptic patients may be ascribed to at least two, not mutually exclusive, mechanisms: a pharmacokinetic mechanism and a decreased sensitivity or availability of targets to antiepileptic drugs (AEDs; i.e., carbamazepine and phenytoin (CBZ, PHT)). Brain:plasma drug concentration ratios were determined intraoperatively during lobectomies performed to alleviate drug-resistant seizures. The brain:plasma ratio of CBZ was 1.48 when therapeutic serum levels (15–34 μM) were achieved. When concentrations of CBZ found in multiple-drug-resistant brain were directly applied to human cortical slices from drug-resistant patients made hyperexcitable and hypersynchronous by Mg 2+-free media, bursting frequency was not significantly affected and overall excitability was reduced by 40%. Similar results were obtained for PHT. At higher AED concentrations (60–200 μM), a dose-dependent decrease of bursting frequency and amplitude was observed. Slices from drug-resistant epileptic patients made hypersynchronous/hyperexcitable by elevated potassium or inhibition of GABA-A receptors behaved similarly. Of note is the response of slices from human multiple-drug-resistant brain, which was greater than in rodent cortex from naive animals. Taken together, our results support the hypothesis that multiple drug resistance to AEDs involves cerebrovascular changes that impede the achievement of appropriate drug levels in the central nervous system.
doi_str_mv 10.1016/j.brainres.2006.02.068
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67951925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006899306005038</els_id><sourcerecordid>17183234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-928c85bbe36b91cb97174857e34ac6035a8ed5079bb4fcd208453341f1d48cf23</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhL1S-wC3BH4ljcwJVfKxUiQucLceZNF7lC4-zUo_8c7zsVj32NBrNM--M3peQG85Kzrj6eCjb6MIcAUvBmCqZKJnSL8iO60YUSlTsJdmxPCm0MfKKvEE85FZKw16TK66U5ErUO_J3P9NjSHGhWWpdZgxHmAGRLj0dtsnNRRe3-yIPAyY3J5oC4gY0LTR3AdYwwpqCpycMP9F9VrgfEtIwZyQNQCfwg5sDTv8118HFyfnlUdDDW_KqdyPCu0u9Jr-_ff11-6O4-_l9f_vlrvCVaFJhhPa6bluQqjXct6bhTaXrBmTlvGKydhq6mjWmbaved4Lpqpay4j3vKu17Ia_Jh7PuGpc_G2CyU0AP4-hmWDa0qjE1N6J-FuQN11LIKoPqDPq4IEbo7RrD5OKD5cyeUrIH-5iSPaVkmbA5pbx4c7mwtRN0T2uXWDLw_gI49G7sYzYq4BPXNLquDMvc5zMH2bhjgGjRB8imdiGCT7ZbwnO__AMDpbbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17183234</pqid></control><display><type>article</type><title>In vitro responsiveness of human-drug-resistant tissue to antiepileptic drugs: Insights into the mechanisms of pharmacoresistance</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Oby, Emily ; Caccia, Silvio ; Vezzani, Annamaria ; Moeddel, Gabriel ; Hallene, Kerri ; Guiso, Giovanna ; Said, Tamer ; Bingaman, William ; Marchi, Nicola ; Baumgartner, Christoph ; Pirker, Susanne ; Czech, Thomas ; Lo Russo, Giorgio ; Janigro, Damir</creator><creatorcontrib>Oby, Emily ; Caccia, Silvio ; Vezzani, Annamaria ; Moeddel, Gabriel ; Hallene, Kerri ; Guiso, Giovanna ; Said, Tamer ; Bingaman, William ; Marchi, Nicola ; Baumgartner, Christoph ; Pirker, Susanne ; Czech, Thomas ; Lo Russo, Giorgio ; Janigro, Damir</creatorcontrib><description>Pharmacoresistance in epileptic patients may be ascribed to at least two, not mutually exclusive, mechanisms: a pharmacokinetic mechanism and a decreased sensitivity or availability of targets to antiepileptic drugs (AEDs; i.e., carbamazepine and phenytoin (CBZ, PHT)). Brain:plasma drug concentration ratios were determined intraoperatively during lobectomies performed to alleviate drug-resistant seizures. The brain:plasma ratio of CBZ was 1.48 when therapeutic serum levels (15–34 μM) were achieved. When concentrations of CBZ found in multiple-drug-resistant brain were directly applied to human cortical slices from drug-resistant patients made hyperexcitable and hypersynchronous by Mg 2+-free media, bursting frequency was not significantly affected and overall excitability was reduced by 40%. Similar results were obtained for PHT. At higher AED concentrations (60–200 μM), a dose-dependent decrease of bursting frequency and amplitude was observed. Slices from drug-resistant epileptic patients made hypersynchronous/hyperexcitable by elevated potassium or inhibition of GABA-A receptors behaved similarly. Of note is the response of slices from human multiple-drug-resistant brain, which was greater than in rodent cortex from naive animals. Taken together, our results support the hypothesis that multiple drug resistance to AEDs involves cerebrovascular changes that impede the achievement of appropriate drug levels in the central nervous system.</description><identifier>ISSN: 0006-8993</identifier><identifier>EISSN: 1872-6240</identifier><identifier>DOI: 10.1016/j.brainres.2006.02.068</identifier><identifier>PMID: 16631625</identifier><identifier>CODEN: BRREAP</identifier><language>eng</language><publisher>London: Elsevier B.V</publisher><subject>Adolescent ; Adult ; Aged ; Animals ; Anticonvulsants - administration &amp; dosage ; Anticonvulsants - blood ; Anticonvulsants - cerebrospinal fluid ; Anticonvulsants. Antiepileptics. Antiparkinson agents ; Biological and medical sciences ; Brain - drug effects ; Brain - metabolism ; Brain development ; Child ; Child, Preschool ; Chromatography, High Pressure Liquid - methods ; Cortical dysplasia ; Drug Resistance ; Drug transport ; Epilepsy - drug therapy ; Epilepsy - physiopathology ; Female ; Humans ; In Vitro Techniques ; Infant ; Male ; Medical sciences ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; Membrane Potentials - radiation effects ; Mice ; Middle Aged ; Neuropharmacology ; P-glycoprotein ; Patch-Clamp Techniques - methods ; Pharmacokinetic ; Pharmacology. Drug treatments ; Potassium Chloride - pharmacology ; Rats</subject><ispartof>Brain research, 2006-05, Vol.1086 (1), p.201-213</ispartof><rights>2006 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-928c85bbe36b91cb97174857e34ac6035a8ed5079bb4fcd208453341f1d48cf23</citedby><cites>FETCH-LOGICAL-c427t-928c85bbe36b91cb97174857e34ac6035a8ed5079bb4fcd208453341f1d48cf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.brainres.2006.02.068$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17785490$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16631625$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oby, Emily</creatorcontrib><creatorcontrib>Caccia, Silvio</creatorcontrib><creatorcontrib>Vezzani, Annamaria</creatorcontrib><creatorcontrib>Moeddel, Gabriel</creatorcontrib><creatorcontrib>Hallene, Kerri</creatorcontrib><creatorcontrib>Guiso, Giovanna</creatorcontrib><creatorcontrib>Said, Tamer</creatorcontrib><creatorcontrib>Bingaman, William</creatorcontrib><creatorcontrib>Marchi, Nicola</creatorcontrib><creatorcontrib>Baumgartner, Christoph</creatorcontrib><creatorcontrib>Pirker, Susanne</creatorcontrib><creatorcontrib>Czech, Thomas</creatorcontrib><creatorcontrib>Lo Russo, Giorgio</creatorcontrib><creatorcontrib>Janigro, Damir</creatorcontrib><title>In vitro responsiveness of human-drug-resistant tissue to antiepileptic drugs: Insights into the mechanisms of pharmacoresistance</title><title>Brain research</title><addtitle>Brain Res</addtitle><description>Pharmacoresistance in epileptic patients may be ascribed to at least two, not mutually exclusive, mechanisms: a pharmacokinetic mechanism and a decreased sensitivity or availability of targets to antiepileptic drugs (AEDs; i.e., carbamazepine and phenytoin (CBZ, PHT)). Brain:plasma drug concentration ratios were determined intraoperatively during lobectomies performed to alleviate drug-resistant seizures. The brain:plasma ratio of CBZ was 1.48 when therapeutic serum levels (15–34 μM) were achieved. When concentrations of CBZ found in multiple-drug-resistant brain were directly applied to human cortical slices from drug-resistant patients made hyperexcitable and hypersynchronous by Mg 2+-free media, bursting frequency was not significantly affected and overall excitability was reduced by 40%. Similar results were obtained for PHT. At higher AED concentrations (60–200 μM), a dose-dependent decrease of bursting frequency and amplitude was observed. Slices from drug-resistant epileptic patients made hypersynchronous/hyperexcitable by elevated potassium or inhibition of GABA-A receptors behaved similarly. Of note is the response of slices from human multiple-drug-resistant brain, which was greater than in rodent cortex from naive animals. Taken together, our results support the hypothesis that multiple drug resistance to AEDs involves cerebrovascular changes that impede the achievement of appropriate drug levels in the central nervous system.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Animals</subject><subject>Anticonvulsants - administration &amp; dosage</subject><subject>Anticonvulsants - blood</subject><subject>Anticonvulsants - cerebrospinal fluid</subject><subject>Anticonvulsants. Antiepileptics. Antiparkinson agents</subject><subject>Biological and medical sciences</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Brain development</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Chromatography, High Pressure Liquid - methods</subject><subject>Cortical dysplasia</subject><subject>Drug Resistance</subject><subject>Drug transport</subject><subject>Epilepsy - drug therapy</subject><subject>Epilepsy - physiopathology</subject><subject>Female</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Infant</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>Membrane Potentials - radiation effects</subject><subject>Mice</subject><subject>Middle Aged</subject><subject>Neuropharmacology</subject><subject>P-glycoprotein</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Pharmacokinetic</subject><subject>Pharmacology. Drug treatments</subject><subject>Potassium Chloride - pharmacology</subject><subject>Rats</subject><issn>0006-8993</issn><issn>1872-6240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvhL1S-wC3BH4ljcwJVfKxUiQucLceZNF7lC4-zUo_8c7zsVj32NBrNM--M3peQG85Kzrj6eCjb6MIcAUvBmCqZKJnSL8iO60YUSlTsJdmxPCm0MfKKvEE85FZKw16TK66U5ErUO_J3P9NjSHGhWWpdZgxHmAGRLj0dtsnNRRe3-yIPAyY3J5oC4gY0LTR3AdYwwpqCpycMP9F9VrgfEtIwZyQNQCfwg5sDTv8118HFyfnlUdDDW_KqdyPCu0u9Jr-_ff11-6O4-_l9f_vlrvCVaFJhhPa6bluQqjXct6bhTaXrBmTlvGKydhq6mjWmbaved4Lpqpay4j3vKu17Ia_Jh7PuGpc_G2CyU0AP4-hmWDa0qjE1N6J-FuQN11LIKoPqDPq4IEbo7RrD5OKD5cyeUrIH-5iSPaVkmbA5pbx4c7mwtRN0T2uXWDLw_gI49G7sYzYq4BPXNLquDMvc5zMH2bhjgGjRB8imdiGCT7ZbwnO__AMDpbbg</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Oby, Emily</creator><creator>Caccia, Silvio</creator><creator>Vezzani, Annamaria</creator><creator>Moeddel, Gabriel</creator><creator>Hallene, Kerri</creator><creator>Guiso, Giovanna</creator><creator>Said, Tamer</creator><creator>Bingaman, William</creator><creator>Marchi, Nicola</creator><creator>Baumgartner, Christoph</creator><creator>Pirker, Susanne</creator><creator>Czech, Thomas</creator><creator>Lo Russo, Giorgio</creator><creator>Janigro, Damir</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20060501</creationdate><title>In vitro responsiveness of human-drug-resistant tissue to antiepileptic drugs: Insights into the mechanisms of pharmacoresistance</title><author>Oby, Emily ; Caccia, Silvio ; Vezzani, Annamaria ; Moeddel, Gabriel ; Hallene, Kerri ; Guiso, Giovanna ; Said, Tamer ; Bingaman, William ; Marchi, Nicola ; Baumgartner, Christoph ; Pirker, Susanne ; Czech, Thomas ; Lo Russo, Giorgio ; Janigro, Damir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-928c85bbe36b91cb97174857e34ac6035a8ed5079bb4fcd208453341f1d48cf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Animals</topic><topic>Anticonvulsants - administration &amp; dosage</topic><topic>Anticonvulsants - blood</topic><topic>Anticonvulsants - cerebrospinal fluid</topic><topic>Anticonvulsants. Antiepileptics. Antiparkinson agents</topic><topic>Biological and medical sciences</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Brain development</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Chromatography, High Pressure Liquid - methods</topic><topic>Cortical dysplasia</topic><topic>Drug Resistance</topic><topic>Drug transport</topic><topic>Epilepsy - drug therapy</topic><topic>Epilepsy - physiopathology</topic><topic>Female</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Infant</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>Membrane Potentials - radiation effects</topic><topic>Mice</topic><topic>Middle Aged</topic><topic>Neuropharmacology</topic><topic>P-glycoprotein</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Pharmacokinetic</topic><topic>Pharmacology. Drug treatments</topic><topic>Potassium Chloride - pharmacology</topic><topic>Rats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oby, Emily</creatorcontrib><creatorcontrib>Caccia, Silvio</creatorcontrib><creatorcontrib>Vezzani, Annamaria</creatorcontrib><creatorcontrib>Moeddel, Gabriel</creatorcontrib><creatorcontrib>Hallene, Kerri</creatorcontrib><creatorcontrib>Guiso, Giovanna</creatorcontrib><creatorcontrib>Said, Tamer</creatorcontrib><creatorcontrib>Bingaman, William</creatorcontrib><creatorcontrib>Marchi, Nicola</creatorcontrib><creatorcontrib>Baumgartner, Christoph</creatorcontrib><creatorcontrib>Pirker, Susanne</creatorcontrib><creatorcontrib>Czech, Thomas</creatorcontrib><creatorcontrib>Lo Russo, Giorgio</creatorcontrib><creatorcontrib>Janigro, Damir</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oby, Emily</au><au>Caccia, Silvio</au><au>Vezzani, Annamaria</au><au>Moeddel, Gabriel</au><au>Hallene, Kerri</au><au>Guiso, Giovanna</au><au>Said, Tamer</au><au>Bingaman, William</au><au>Marchi, Nicola</au><au>Baumgartner, Christoph</au><au>Pirker, Susanne</au><au>Czech, Thomas</au><au>Lo Russo, Giorgio</au><au>Janigro, Damir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro responsiveness of human-drug-resistant tissue to antiepileptic drugs: Insights into the mechanisms of pharmacoresistance</atitle><jtitle>Brain research</jtitle><addtitle>Brain Res</addtitle><date>2006-05-01</date><risdate>2006</risdate><volume>1086</volume><issue>1</issue><spage>201</spage><epage>213</epage><pages>201-213</pages><issn>0006-8993</issn><eissn>1872-6240</eissn><coden>BRREAP</coden><abstract>Pharmacoresistance in epileptic patients may be ascribed to at least two, not mutually exclusive, mechanisms: a pharmacokinetic mechanism and a decreased sensitivity or availability of targets to antiepileptic drugs (AEDs; i.e., carbamazepine and phenytoin (CBZ, PHT)). Brain:plasma drug concentration ratios were determined intraoperatively during lobectomies performed to alleviate drug-resistant seizures. The brain:plasma ratio of CBZ was 1.48 when therapeutic serum levels (15–34 μM) were achieved. When concentrations of CBZ found in multiple-drug-resistant brain were directly applied to human cortical slices from drug-resistant patients made hyperexcitable and hypersynchronous by Mg 2+-free media, bursting frequency was not significantly affected and overall excitability was reduced by 40%. Similar results were obtained for PHT. At higher AED concentrations (60–200 μM), a dose-dependent decrease of bursting frequency and amplitude was observed. Slices from drug-resistant epileptic patients made hypersynchronous/hyperexcitable by elevated potassium or inhibition of GABA-A receptors behaved similarly. Of note is the response of slices from human multiple-drug-resistant brain, which was greater than in rodent cortex from naive animals. Taken together, our results support the hypothesis that multiple drug resistance to AEDs involves cerebrovascular changes that impede the achievement of appropriate drug levels in the central nervous system.</abstract><cop>London</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><pmid>16631625</pmid><doi>10.1016/j.brainres.2006.02.068</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-8993
ispartof Brain research, 2006-05, Vol.1086 (1), p.201-213
issn 0006-8993
1872-6240
language eng
recordid cdi_proquest_miscellaneous_67951925
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Adolescent
Adult
Aged
Animals
Anticonvulsants - administration & dosage
Anticonvulsants - blood
Anticonvulsants - cerebrospinal fluid
Anticonvulsants. Antiepileptics. Antiparkinson agents
Biological and medical sciences
Brain - drug effects
Brain - metabolism
Brain development
Child
Child, Preschool
Chromatography, High Pressure Liquid - methods
Cortical dysplasia
Drug Resistance
Drug transport
Epilepsy - drug therapy
Epilepsy - physiopathology
Female
Humans
In Vitro Techniques
Infant
Male
Medical sciences
Membrane Potentials - drug effects
Membrane Potentials - physiology
Membrane Potentials - radiation effects
Mice
Middle Aged
Neuropharmacology
P-glycoprotein
Patch-Clamp Techniques - methods
Pharmacokinetic
Pharmacology. Drug treatments
Potassium Chloride - pharmacology
Rats
title In vitro responsiveness of human-drug-resistant tissue to antiepileptic drugs: Insights into the mechanisms of pharmacoresistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20responsiveness%20of%20human-drug-resistant%20tissue%20to%20antiepileptic%20drugs:%20Insights%20into%20the%20mechanisms%20of%20pharmacoresistance&rft.jtitle=Brain%20research&rft.au=Oby,%20Emily&rft.date=2006-05-01&rft.volume=1086&rft.issue=1&rft.spage=201&rft.epage=213&rft.pages=201-213&rft.issn=0006-8993&rft.eissn=1872-6240&rft.coden=BRREAP&rft_id=info:doi/10.1016/j.brainres.2006.02.068&rft_dat=%3Cproquest_cross%3E17183234%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17183234&rft_id=info:pmid/16631625&rft_els_id=S0006899306005038&rfr_iscdi=true