Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain
The efficient conversion of xylose-containing biomass hydrolysate by the ethanologenic yeast Saccharomyces cerevisiae to useful chemicals such as ethanol still remains elusive, despite significant efforts in both strain and process development. This study focused on the recovery and characterization...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2005-06, Vol.67 (6), p.827-837 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 837 |
---|---|
container_issue | 6 |
container_start_page | 827 |
container_title | Applied microbiology and biotechnology |
container_volume | 67 |
creator | PITKÄNEN, Juha-Pekka RINTALA, Eija ARISTIDOU, Aristos RUOHONEN, Laura PENTTILÄ, Merja |
description | The efficient conversion of xylose-containing biomass hydrolysate by the ethanologenic yeast Saccharomyces cerevisiae to useful chemicals such as ethanol still remains elusive, despite significant efforts in both strain and process development. This study focused on the recovery and characterization of xylose chemostat isolates of a S. cerevisiae strain that overexpresses xylose reductase- and xylitol dehydrogenase-encoding genes from Pichia stipitis and the gene encoding the endogenous xylulokinase. The isolates were recovered from aerobic chemostat cultivations on xylose as the sole or main carbon source. Under aerobic conditions, on minimal medium with 30 g l(-1) xylose, the growth rate of the chemostat isolates was 3-fold higher than that of the original strain (0.15 h(-1) vs 0.05 h(-1)). In a detailed characterization comparing the metabolism of the isolates with the metabolism of xylose, glucose, and ethanol in the original strain, the isolates showed improved properties in the assumed bottlenecks of xylose metabolism. The xylose uptake rate was increased almost 2-fold. Activities of the key enzymes in the pentose phosphate pathway (transketolase, transaldolase) increased 2-fold while the concentrations of their substrates (pentose 5-phosphates, sedoheptulose 7-phosphate) decreased correspondingly. Under anaerobic conditions, on minimal medium with 45 g l(-1) xylose, the ethanol productivity (in terms of cell dry weight; CDW) of one of the isolates increased from 0.012 g g(-1) CDW h(-1) to 0.017 g g(-1) CDW h(-1) and the yield from 0.09 g g(-1) xylose to 0.14 g g(-1) xylose, respectively. |
doi_str_mv | 10.1007/s00253-004-1798-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67951740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67951740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-6666e89ec521e953a44d79af9e62a288cfac300dd60c6a4254b63c03a41eaa003</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxiMEokvhAbggCwlOBMZO7MRHVPFPqsQBkLhFs86kceXEi-20LM_EQ-LsrqjEBV_GGv2-bzTzFcVTDq85QPMmAghZlQB1yRvdlvpeseF1JUpQvL5fbIA3smykbs-KRzFeA3DRKvWwOONSVSBbuSl-f987H4mZkSYfEyZmo3eYKDI_sC9ozIjBT3uTG4YC3dhokVgc_S1Dl3KnZxMl3HpnEzGce0bzr_1EzNENuSzy0w5X6tamkf08THvFrtxiDp-DII04e_fXJ07r7DQS88Fe2RkdiymgnR8XDwZ0kZ6c6nnx7f27rxcfy8vPHz5dvL0sTS3qVKr8qNVkpOCkZYV13TcaB01KoGhbM6CpAPpegVFYC1lvVWUgc5wQAarz4uXRdxf8j4Vi6iYbDTmHM_kldqrRkjf1_8F8f6hayTP4_B_w2i8hb5bNBFSqbbnOED9CJvgYAw3dLtgJw77j0K2Bd8fAuxx4twberZpnJ-NlO1F_pzglnIEXJwCjQTcEnI2Nd5zSXGjVVH8AAwy2ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>620368819</pqid></control><display><type>article</type><title>Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>PITKÄNEN, Juha-Pekka ; RINTALA, Eija ; ARISTIDOU, Aristos ; RUOHONEN, Laura ; PENTTILÄ, Merja</creator><creatorcontrib>PITKÄNEN, Juha-Pekka ; RINTALA, Eija ; ARISTIDOU, Aristos ; RUOHONEN, Laura ; PENTTILÄ, Merja</creatorcontrib><description>The efficient conversion of xylose-containing biomass hydrolysate by the ethanologenic yeast Saccharomyces cerevisiae to useful chemicals such as ethanol still remains elusive, despite significant efforts in both strain and process development. This study focused on the recovery and characterization of xylose chemostat isolates of a S. cerevisiae strain that overexpresses xylose reductase- and xylitol dehydrogenase-encoding genes from Pichia stipitis and the gene encoding the endogenous xylulokinase. The isolates were recovered from aerobic chemostat cultivations on xylose as the sole or main carbon source. Under aerobic conditions, on minimal medium with 30 g l(-1) xylose, the growth rate of the chemostat isolates was 3-fold higher than that of the original strain (0.15 h(-1) vs 0.05 h(-1)). In a detailed characterization comparing the metabolism of the isolates with the metabolism of xylose, glucose, and ethanol in the original strain, the isolates showed improved properties in the assumed bottlenecks of xylose metabolism. The xylose uptake rate was increased almost 2-fold. Activities of the key enzymes in the pentose phosphate pathway (transketolase, transaldolase) increased 2-fold while the concentrations of their substrates (pentose 5-phosphates, sedoheptulose 7-phosphate) decreased correspondingly. Under anaerobic conditions, on minimal medium with 45 g l(-1) xylose, the ethanol productivity (in terms of cell dry weight; CDW) of one of the isolates increased from 0.012 g g(-1) CDW h(-1) to 0.017 g g(-1) CDW h(-1) and the yield from 0.09 g g(-1) xylose to 0.14 g g(-1) xylose, respectively.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-004-1798-9</identifier><identifier>PMID: 15630585</identifier><identifier>CODEN: AMBIDG</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Aerobic conditions ; Aerobiosis ; Aldehyde Reductase - biosynthesis ; Aldehyde Reductase - genetics ; Anaerobic conditions ; Bacteria ; Biological and medical sciences ; Biology of microorganisms of confirmed or potential industrial interest ; Biotechnology ; Carbon sources ; Culture Media ; D-Xylulose Reductase ; Ethanol ; Ethanol - metabolism ; Fundamental and applied biological sciences. Psychology ; Metabolism ; Metabolites ; Microbiology ; Mission oriented research ; Phosphotransferases (Alcohol Group Acceptor) - biosynthesis ; Physiology and metabolism ; Pichia - genetics ; Pichia stipitis ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae - physiology ; Sugar Alcohol Dehydrogenases - biosynthesis ; Sugar Alcohol Dehydrogenases - genetics ; Transformation, Genetic ; Xylose - metabolism ; Yeast ; Yeasts</subject><ispartof>Applied microbiology and biotechnology, 2005-06, Vol.67 (6), p.827-837</ispartof><rights>2005 INIST-CNRS</rights><rights>Springer-Verlag 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-6666e89ec521e953a44d79af9e62a288cfac300dd60c6a4254b63c03a41eaa003</citedby><cites>FETCH-LOGICAL-c424t-6666e89ec521e953a44d79af9e62a288cfac300dd60c6a4254b63c03a41eaa003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16912967$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15630585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>PITKÄNEN, Juha-Pekka</creatorcontrib><creatorcontrib>RINTALA, Eija</creatorcontrib><creatorcontrib>ARISTIDOU, Aristos</creatorcontrib><creatorcontrib>RUOHONEN, Laura</creatorcontrib><creatorcontrib>PENTTILÄ, Merja</creatorcontrib><title>Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><description>The efficient conversion of xylose-containing biomass hydrolysate by the ethanologenic yeast Saccharomyces cerevisiae to useful chemicals such as ethanol still remains elusive, despite significant efforts in both strain and process development. This study focused on the recovery and characterization of xylose chemostat isolates of a S. cerevisiae strain that overexpresses xylose reductase- and xylitol dehydrogenase-encoding genes from Pichia stipitis and the gene encoding the endogenous xylulokinase. The isolates were recovered from aerobic chemostat cultivations on xylose as the sole or main carbon source. Under aerobic conditions, on minimal medium with 30 g l(-1) xylose, the growth rate of the chemostat isolates was 3-fold higher than that of the original strain (0.15 h(-1) vs 0.05 h(-1)). In a detailed characterization comparing the metabolism of the isolates with the metabolism of xylose, glucose, and ethanol in the original strain, the isolates showed improved properties in the assumed bottlenecks of xylose metabolism. The xylose uptake rate was increased almost 2-fold. Activities of the key enzymes in the pentose phosphate pathway (transketolase, transaldolase) increased 2-fold while the concentrations of their substrates (pentose 5-phosphates, sedoheptulose 7-phosphate) decreased correspondingly. Under anaerobic conditions, on minimal medium with 45 g l(-1) xylose, the ethanol productivity (in terms of cell dry weight; CDW) of one of the isolates increased from 0.012 g g(-1) CDW h(-1) to 0.017 g g(-1) CDW h(-1) and the yield from 0.09 g g(-1) xylose to 0.14 g g(-1) xylose, respectively.</description><subject>Aerobic conditions</subject><subject>Aerobiosis</subject><subject>Aldehyde Reductase - biosynthesis</subject><subject>Aldehyde Reductase - genetics</subject><subject>Anaerobic conditions</subject><subject>Bacteria</subject><subject>Biological and medical sciences</subject><subject>Biology of microorganisms of confirmed or potential industrial interest</subject><subject>Biotechnology</subject><subject>Carbon sources</subject><subject>Culture Media</subject><subject>D-Xylulose Reductase</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microbiology</subject><subject>Mission oriented research</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - biosynthesis</subject><subject>Physiology and metabolism</subject><subject>Pichia - genetics</subject><subject>Pichia stipitis</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae - physiology</subject><subject>Sugar Alcohol Dehydrogenases - biosynthesis</subject><subject>Sugar Alcohol Dehydrogenases - genetics</subject><subject>Transformation, Genetic</subject><subject>Xylose - metabolism</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc9u1DAQxiMEokvhAbggCwlOBMZO7MRHVPFPqsQBkLhFs86kceXEi-20LM_EQ-LsrqjEBV_GGv2-bzTzFcVTDq85QPMmAghZlQB1yRvdlvpeseF1JUpQvL5fbIA3smykbs-KRzFeA3DRKvWwOONSVSBbuSl-f987H4mZkSYfEyZmo3eYKDI_sC9ozIjBT3uTG4YC3dhokVgc_S1Dl3KnZxMl3HpnEzGce0bzr_1EzNENuSzy0w5X6tamkf08THvFrtxiDp-DII04e_fXJ07r7DQS88Fe2RkdiymgnR8XDwZ0kZ6c6nnx7f27rxcfy8vPHz5dvL0sTS3qVKr8qNVkpOCkZYV13TcaB01KoGhbM6CpAPpegVFYC1lvVWUgc5wQAarz4uXRdxf8j4Vi6iYbDTmHM_kldqrRkjf1_8F8f6hayTP4_B_w2i8hb5bNBFSqbbnOED9CJvgYAw3dLtgJw77j0K2Bd8fAuxx4twberZpnJ-NlO1F_pzglnIEXJwCjQTcEnI2Nd5zSXGjVVH8AAwy2ug</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>PITKÄNEN, Juha-Pekka</creator><creator>RINTALA, Eija</creator><creator>ARISTIDOU, Aristos</creator><creator>RUOHONEN, Laura</creator><creator>PENTTILÄ, Merja</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20050601</creationdate><title>Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain</title><author>PITKÄNEN, Juha-Pekka ; RINTALA, Eija ; ARISTIDOU, Aristos ; RUOHONEN, Laura ; PENTTILÄ, Merja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-6666e89ec521e953a44d79af9e62a288cfac300dd60c6a4254b63c03a41eaa003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Aerobic conditions</topic><topic>Aerobiosis</topic><topic>Aldehyde Reductase - biosynthesis</topic><topic>Aldehyde Reductase - genetics</topic><topic>Anaerobic conditions</topic><topic>Bacteria</topic><topic>Biological and medical sciences</topic><topic>Biology of microorganisms of confirmed or potential industrial interest</topic><topic>Biotechnology</topic><topic>Carbon sources</topic><topic>Culture Media</topic><topic>D-Xylulose Reductase</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microbiology</topic><topic>Mission oriented research</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - biosynthesis</topic><topic>Physiology and metabolism</topic><topic>Pichia - genetics</topic><topic>Pichia stipitis</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae - physiology</topic><topic>Sugar Alcohol Dehydrogenases - biosynthesis</topic><topic>Sugar Alcohol Dehydrogenases - genetics</topic><topic>Transformation, Genetic</topic><topic>Xylose - metabolism</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PITKÄNEN, Juha-Pekka</creatorcontrib><creatorcontrib>RINTALA, Eija</creatorcontrib><creatorcontrib>ARISTIDOU, Aristos</creatorcontrib><creatorcontrib>RUOHONEN, Laura</creatorcontrib><creatorcontrib>PENTTILÄ, Merja</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PITKÄNEN, Juha-Pekka</au><au>RINTALA, Eija</au><au>ARISTIDOU, Aristos</au><au>RUOHONEN, Laura</au><au>PENTTILÄ, Merja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain</atitle><jtitle>Applied microbiology and biotechnology</jtitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2005-06-01</date><risdate>2005</risdate><volume>67</volume><issue>6</issue><spage>827</spage><epage>837</epage><pages>827-837</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><coden>AMBIDG</coden><abstract>The efficient conversion of xylose-containing biomass hydrolysate by the ethanologenic yeast Saccharomyces cerevisiae to useful chemicals such as ethanol still remains elusive, despite significant efforts in both strain and process development. This study focused on the recovery and characterization of xylose chemostat isolates of a S. cerevisiae strain that overexpresses xylose reductase- and xylitol dehydrogenase-encoding genes from Pichia stipitis and the gene encoding the endogenous xylulokinase. The isolates were recovered from aerobic chemostat cultivations on xylose as the sole or main carbon source. Under aerobic conditions, on minimal medium with 30 g l(-1) xylose, the growth rate of the chemostat isolates was 3-fold higher than that of the original strain (0.15 h(-1) vs 0.05 h(-1)). In a detailed characterization comparing the metabolism of the isolates with the metabolism of xylose, glucose, and ethanol in the original strain, the isolates showed improved properties in the assumed bottlenecks of xylose metabolism. The xylose uptake rate was increased almost 2-fold. Activities of the key enzymes in the pentose phosphate pathway (transketolase, transaldolase) increased 2-fold while the concentrations of their substrates (pentose 5-phosphates, sedoheptulose 7-phosphate) decreased correspondingly. Under anaerobic conditions, on minimal medium with 45 g l(-1) xylose, the ethanol productivity (in terms of cell dry weight; CDW) of one of the isolates increased from 0.012 g g(-1) CDW h(-1) to 0.017 g g(-1) CDW h(-1) and the yield from 0.09 g g(-1) xylose to 0.14 g g(-1) xylose, respectively.</abstract><cop>Berlin</cop><pub>Springer</pub><pmid>15630585</pmid><doi>10.1007/s00253-004-1798-9</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2005-06, Vol.67 (6), p.827-837 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_67951740 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Aerobic conditions Aerobiosis Aldehyde Reductase - biosynthesis Aldehyde Reductase - genetics Anaerobic conditions Bacteria Biological and medical sciences Biology of microorganisms of confirmed or potential industrial interest Biotechnology Carbon sources Culture Media D-Xylulose Reductase Ethanol Ethanol - metabolism Fundamental and applied biological sciences. Psychology Metabolism Metabolites Microbiology Mission oriented research Phosphotransferases (Alcohol Group Acceptor) - biosynthesis Physiology and metabolism Pichia - genetics Pichia stipitis Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae - physiology Sugar Alcohol Dehydrogenases - biosynthesis Sugar Alcohol Dehydrogenases - genetics Transformation, Genetic Xylose - metabolism Yeast Yeasts |
title | Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Xylose%20chemostat%20isolates%20of%20Saccharomyces%20cerevisiae%20show%20altered%20metabolite%20and%20enzyme%20levels%20compared%20with%20xylose,%20glucose,%20and%20ethanol%20metabolism%20of%20the%20original%20strain&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=PITK%C3%84NEN,%20Juha-Pekka&rft.date=2005-06-01&rft.volume=67&rft.issue=6&rft.spage=827&rft.epage=837&rft.pages=827-837&rft.issn=0175-7598&rft.eissn=1432-0614&rft.coden=AMBIDG&rft_id=info:doi/10.1007/s00253-004-1798-9&rft_dat=%3Cproquest_cross%3E67951740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=620368819&rft_id=info:pmid/15630585&rfr_iscdi=true |