Protein function prediction via graph kernels

Motivation: Computational approaches to protein function prediction infer protein function by finding proteins with similar sequence, structure, surface clefts, chemical properties, amino acid motifs, interaction partners or phylogenetic profiles. We present a new approach that combines sequential,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2005-06, Vol.21 (suppl-1), p.i47-i56
Hauptverfasser: Borgwardt, Karsten M., Ong, Cheng Soon, Schönauer, Stefan, Vishwanathan, S. V. N., Smola, Alex J., Kriegel, Hans-Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page i56
container_issue suppl-1
container_start_page i47
container_title Bioinformatics
container_volume 21
creator Borgwardt, Karsten M.
Ong, Cheng Soon
Schönauer, Stefan
Vishwanathan, S. V. N.
Smola, Alex J.
Kriegel, Hans-Peter
description Motivation: Computational approaches to protein function prediction infer protein function by finding proteins with similar sequence, structure, surface clefts, chemical properties, amino acid motifs, interaction partners or phylogenetic profiles. We present a new approach that combines sequential, structural and chemical information into one graph model of proteins. We predict functional class membership of enzymes and non-enzymes using graph kernels and support vector machine classification on these protein graphs. Results: Our graph model, derivable from protein sequence and structure only, is competitive with vector models that require additional protein information, such as the size of surface pockets. If we include this extra information into our graph model, our classifier yields significantly higher accuracy levels than the vector models. Hyperkernels allow us to select and to optimally combine the most relevant node attributes in our protein graphs. We have laid the foundation for a protein function prediction system that integrates protein information from various sources efficiently and effectively. Availability: More information available via www.dbs.ifi.lmu.de/Mitarbeiter/borgwardt.html. Contact: borgwardt@dbs.ifi.lmu.de
doi_str_mv 10.1093/bioinformatics/bti1007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67946666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19698691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-dccafe672d296f16c18c88f1f80280f455985811a448689d14df2b9537ea5ff23</originalsourceid><addsrcrecordid>eNqF0U1LAzEQBuAgitbqX5Diwdtqks3H5KhFrVjQg4J4CWk20fRjtya7ov_eSIuil-aSgTwzZHgROiL4lGBVnk1CE2rfxIVpg01nkzYQjOUW6hEmcEExV9u5LoUsGOByD-2nNMWYE8bYLtojXAnCVNlDxX1sWhfqge9q24amHiyjq8KqfA9m8BLN8nUwc7F283SAdryZJ3e4vvvo8eryYTgqxnfXN8PzcWE5x21RWWu8E5JWVAlPhCVgATzxgClgzzhXwIEQwxgIUBVhlacTxUvpDPeeln10spq7jM1b51KrFyFZN5-b2jVd0kIqJvLZCClmIEHyjZAooUAokuHxPzhtuljnbbMBkf9OISOxQjY2KUXn9TKGhYmfmmD9nY_-m49e55Mbj9bTu8nCVb9t60AyKFYgpNZ9_LybOMtLl5Lr0dOzFk_04hYAtCy_AK4-nps</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198645528</pqid></control><display><type>article</type><title>Protein function prediction via graph kernels</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Borgwardt, Karsten M. ; Ong, Cheng Soon ; Schönauer, Stefan ; Vishwanathan, S. V. N. ; Smola, Alex J. ; Kriegel, Hans-Peter</creator><creatorcontrib>Borgwardt, Karsten M. ; Ong, Cheng Soon ; Schönauer, Stefan ; Vishwanathan, S. V. N. ; Smola, Alex J. ; Kriegel, Hans-Peter</creatorcontrib><description>Motivation: Computational approaches to protein function prediction infer protein function by finding proteins with similar sequence, structure, surface clefts, chemical properties, amino acid motifs, interaction partners or phylogenetic profiles. We present a new approach that combines sequential, structural and chemical information into one graph model of proteins. We predict functional class membership of enzymes and non-enzymes using graph kernels and support vector machine classification on these protein graphs. Results: Our graph model, derivable from protein sequence and structure only, is competitive with vector models that require additional protein information, such as the size of surface pockets. If we include this extra information into our graph model, our classifier yields significantly higher accuracy levels than the vector models. Hyperkernels allow us to select and to optimally combine the most relevant node attributes in our protein graphs. We have laid the foundation for a protein function prediction system that integrates protein information from various sources efficiently and effectively. Availability: More information available via www.dbs.ifi.lmu.de/Mitarbeiter/borgwardt.html. Contact: borgwardt@dbs.ifi.lmu.de</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/bti1007</identifier><identifier>PMID: 15961493</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Computational Biology - methods ; Databases, Protein ; Enzymes - chemistry ; Models, Statistical ; Protein Conformation ; Protein Structure, Secondary ; Sequence Analysis, Protein - methods ; Software</subject><ispartof>Bioinformatics, 2005-06, Vol.21 (suppl-1), p.i47-i56</ispartof><rights>Copyright Oxford University Press(England) Jun 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-dccafe672d296f16c18c88f1f80280f455985811a448689d14df2b9537ea5ff23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15961493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borgwardt, Karsten M.</creatorcontrib><creatorcontrib>Ong, Cheng Soon</creatorcontrib><creatorcontrib>Schönauer, Stefan</creatorcontrib><creatorcontrib>Vishwanathan, S. V. N.</creatorcontrib><creatorcontrib>Smola, Alex J.</creatorcontrib><creatorcontrib>Kriegel, Hans-Peter</creatorcontrib><title>Protein function prediction via graph kernels</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Computational approaches to protein function prediction infer protein function by finding proteins with similar sequence, structure, surface clefts, chemical properties, amino acid motifs, interaction partners or phylogenetic profiles. We present a new approach that combines sequential, structural and chemical information into one graph model of proteins. We predict functional class membership of enzymes and non-enzymes using graph kernels and support vector machine classification on these protein graphs. Results: Our graph model, derivable from protein sequence and structure only, is competitive with vector models that require additional protein information, such as the size of surface pockets. If we include this extra information into our graph model, our classifier yields significantly higher accuracy levels than the vector models. Hyperkernels allow us to select and to optimally combine the most relevant node attributes in our protein graphs. We have laid the foundation for a protein function prediction system that integrates protein information from various sources efficiently and effectively. Availability: More information available via www.dbs.ifi.lmu.de/Mitarbeiter/borgwardt.html. Contact: borgwardt@dbs.ifi.lmu.de</description><subject>Algorithms</subject><subject>Computational Biology - methods</subject><subject>Databases, Protein</subject><subject>Enzymes - chemistry</subject><subject>Models, Statistical</subject><subject>Protein Conformation</subject><subject>Protein Structure, Secondary</subject><subject>Sequence Analysis, Protein - methods</subject><subject>Software</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1LAzEQBuAgitbqX5Diwdtqks3H5KhFrVjQg4J4CWk20fRjtya7ov_eSIuil-aSgTwzZHgROiL4lGBVnk1CE2rfxIVpg01nkzYQjOUW6hEmcEExV9u5LoUsGOByD-2nNMWYE8bYLtojXAnCVNlDxX1sWhfqge9q24amHiyjq8KqfA9m8BLN8nUwc7F283SAdryZJ3e4vvvo8eryYTgqxnfXN8PzcWE5x21RWWu8E5JWVAlPhCVgATzxgClgzzhXwIEQwxgIUBVhlacTxUvpDPeeln10spq7jM1b51KrFyFZN5-b2jVd0kIqJvLZCClmIEHyjZAooUAokuHxPzhtuljnbbMBkf9OISOxQjY2KUXn9TKGhYmfmmD9nY_-m49e55Mbj9bTu8nCVb9t60AyKFYgpNZ9_LybOMtLl5Lr0dOzFk_04hYAtCy_AK4-nps</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Borgwardt, Karsten M.</creator><creator>Ong, Cheng Soon</creator><creator>Schönauer, Stefan</creator><creator>Vishwanathan, S. V. N.</creator><creator>Smola, Alex J.</creator><creator>Kriegel, Hans-Peter</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20050601</creationdate><title>Protein function prediction via graph kernels</title><author>Borgwardt, Karsten M. ; Ong, Cheng Soon ; Schönauer, Stefan ; Vishwanathan, S. V. N. ; Smola, Alex J. ; Kriegel, Hans-Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-dccafe672d296f16c18c88f1f80280f455985811a448689d14df2b9537ea5ff23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Computational Biology - methods</topic><topic>Databases, Protein</topic><topic>Enzymes - chemistry</topic><topic>Models, Statistical</topic><topic>Protein Conformation</topic><topic>Protein Structure, Secondary</topic><topic>Sequence Analysis, Protein - methods</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borgwardt, Karsten M.</creatorcontrib><creatorcontrib>Ong, Cheng Soon</creatorcontrib><creatorcontrib>Schönauer, Stefan</creatorcontrib><creatorcontrib>Vishwanathan, S. V. N.</creatorcontrib><creatorcontrib>Smola, Alex J.</creatorcontrib><creatorcontrib>Kriegel, Hans-Peter</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borgwardt, Karsten M.</au><au>Ong, Cheng Soon</au><au>Schönauer, Stefan</au><au>Vishwanathan, S. V. N.</au><au>Smola, Alex J.</au><au>Kriegel, Hans-Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein function prediction via graph kernels</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2005-06-01</date><risdate>2005</risdate><volume>21</volume><issue>suppl-1</issue><spage>i47</spage><epage>i56</epage><pages>i47-i56</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: Computational approaches to protein function prediction infer protein function by finding proteins with similar sequence, structure, surface clefts, chemical properties, amino acid motifs, interaction partners or phylogenetic profiles. We present a new approach that combines sequential, structural and chemical information into one graph model of proteins. We predict functional class membership of enzymes and non-enzymes using graph kernels and support vector machine classification on these protein graphs. Results: Our graph model, derivable from protein sequence and structure only, is competitive with vector models that require additional protein information, such as the size of surface pockets. If we include this extra information into our graph model, our classifier yields significantly higher accuracy levels than the vector models. Hyperkernels allow us to select and to optimally combine the most relevant node attributes in our protein graphs. We have laid the foundation for a protein function prediction system that integrates protein information from various sources efficiently and effectively. Availability: More information available via www.dbs.ifi.lmu.de/Mitarbeiter/borgwardt.html. Contact: borgwardt@dbs.ifi.lmu.de</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>15961493</pmid><doi>10.1093/bioinformatics/bti1007</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2005-06, Vol.21 (suppl-1), p.i47-i56
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_67946666
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Computational Biology - methods
Databases, Protein
Enzymes - chemistry
Models, Statistical
Protein Conformation
Protein Structure, Secondary
Sequence Analysis, Protein - methods
Software
title Protein function prediction via graph kernels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20function%20prediction%20via%20graph%20kernels&rft.jtitle=Bioinformatics&rft.au=Borgwardt,%20Karsten%20M.&rft.date=2005-06-01&rft.volume=21&rft.issue=suppl-1&rft.spage=i47&rft.epage=i56&rft.pages=i47-i56&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/bti1007&rft_dat=%3Cproquest_cross%3E19698691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198645528&rft_id=info:pmid/15961493&rfr_iscdi=true