Protein function prediction via graph kernels
Motivation: Computational approaches to protein function prediction infer protein function by finding proteins with similar sequence, structure, surface clefts, chemical properties, amino acid motifs, interaction partners or phylogenetic profiles. We present a new approach that combines sequential,...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2005-06, Vol.21 (suppl-1), p.i47-i56 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | i56 |
---|---|
container_issue | suppl-1 |
container_start_page | i47 |
container_title | Bioinformatics |
container_volume | 21 |
creator | Borgwardt, Karsten M. Ong, Cheng Soon Schönauer, Stefan Vishwanathan, S. V. N. Smola, Alex J. Kriegel, Hans-Peter |
description | Motivation: Computational approaches to protein function prediction infer protein function by finding proteins with similar sequence, structure, surface clefts, chemical properties, amino acid motifs, interaction partners or phylogenetic profiles. We present a new approach that combines sequential, structural and chemical information into one graph model of proteins. We predict functional class membership of enzymes and non-enzymes using graph kernels and support vector machine classification on these protein graphs. Results: Our graph model, derivable from protein sequence and structure only, is competitive with vector models that require additional protein information, such as the size of surface pockets. If we include this extra information into our graph model, our classifier yields significantly higher accuracy levels than the vector models. Hyperkernels allow us to select and to optimally combine the most relevant node attributes in our protein graphs. We have laid the foundation for a protein function prediction system that integrates protein information from various sources efficiently and effectively. Availability: More information available via www.dbs.ifi.lmu.de/Mitarbeiter/borgwardt.html. Contact: borgwardt@dbs.ifi.lmu.de |
doi_str_mv | 10.1093/bioinformatics/bti1007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67946666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19698691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-dccafe672d296f16c18c88f1f80280f455985811a448689d14df2b9537ea5ff23</originalsourceid><addsrcrecordid>eNqF0U1LAzEQBuAgitbqX5Diwdtqks3H5KhFrVjQg4J4CWk20fRjtya7ov_eSIuil-aSgTwzZHgROiL4lGBVnk1CE2rfxIVpg01nkzYQjOUW6hEmcEExV9u5LoUsGOByD-2nNMWYE8bYLtojXAnCVNlDxX1sWhfqge9q24amHiyjq8KqfA9m8BLN8nUwc7F283SAdryZJ3e4vvvo8eryYTgqxnfXN8PzcWE5x21RWWu8E5JWVAlPhCVgATzxgClgzzhXwIEQwxgIUBVhlacTxUvpDPeeln10spq7jM1b51KrFyFZN5-b2jVd0kIqJvLZCClmIEHyjZAooUAokuHxPzhtuljnbbMBkf9OISOxQjY2KUXn9TKGhYmfmmD9nY_-m49e55Mbj9bTu8nCVb9t60AyKFYgpNZ9_LybOMtLl5Lr0dOzFk_04hYAtCy_AK4-nps</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198645528</pqid></control><display><type>article</type><title>Protein function prediction via graph kernels</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Borgwardt, Karsten M. ; Ong, Cheng Soon ; Schönauer, Stefan ; Vishwanathan, S. V. N. ; Smola, Alex J. ; Kriegel, Hans-Peter</creator><creatorcontrib>Borgwardt, Karsten M. ; Ong, Cheng Soon ; Schönauer, Stefan ; Vishwanathan, S. V. N. ; Smola, Alex J. ; Kriegel, Hans-Peter</creatorcontrib><description>Motivation: Computational approaches to protein function prediction infer protein function by finding proteins with similar sequence, structure, surface clefts, chemical properties, amino acid motifs, interaction partners or phylogenetic profiles. We present a new approach that combines sequential, structural and chemical information into one graph model of proteins. We predict functional class membership of enzymes and non-enzymes using graph kernels and support vector machine classification on these protein graphs. Results: Our graph model, derivable from protein sequence and structure only, is competitive with vector models that require additional protein information, such as the size of surface pockets. If we include this extra information into our graph model, our classifier yields significantly higher accuracy levels than the vector models. Hyperkernels allow us to select and to optimally combine the most relevant node attributes in our protein graphs. We have laid the foundation for a protein function prediction system that integrates protein information from various sources efficiently and effectively. Availability: More information available via www.dbs.ifi.lmu.de/Mitarbeiter/borgwardt.html. Contact: borgwardt@dbs.ifi.lmu.de</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/bti1007</identifier><identifier>PMID: 15961493</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Computational Biology - methods ; Databases, Protein ; Enzymes - chemistry ; Models, Statistical ; Protein Conformation ; Protein Structure, Secondary ; Sequence Analysis, Protein - methods ; Software</subject><ispartof>Bioinformatics, 2005-06, Vol.21 (suppl-1), p.i47-i56</ispartof><rights>Copyright Oxford University Press(England) Jun 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-dccafe672d296f16c18c88f1f80280f455985811a448689d14df2b9537ea5ff23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15961493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borgwardt, Karsten M.</creatorcontrib><creatorcontrib>Ong, Cheng Soon</creatorcontrib><creatorcontrib>Schönauer, Stefan</creatorcontrib><creatorcontrib>Vishwanathan, S. V. N.</creatorcontrib><creatorcontrib>Smola, Alex J.</creatorcontrib><creatorcontrib>Kriegel, Hans-Peter</creatorcontrib><title>Protein function prediction via graph kernels</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Computational approaches to protein function prediction infer protein function by finding proteins with similar sequence, structure, surface clefts, chemical properties, amino acid motifs, interaction partners or phylogenetic profiles. We present a new approach that combines sequential, structural and chemical information into one graph model of proteins. We predict functional class membership of enzymes and non-enzymes using graph kernels and support vector machine classification on these protein graphs. Results: Our graph model, derivable from protein sequence and structure only, is competitive with vector models that require additional protein information, such as the size of surface pockets. If we include this extra information into our graph model, our classifier yields significantly higher accuracy levels than the vector models. Hyperkernels allow us to select and to optimally combine the most relevant node attributes in our protein graphs. We have laid the foundation for a protein function prediction system that integrates protein information from various sources efficiently and effectively. Availability: More information available via www.dbs.ifi.lmu.de/Mitarbeiter/borgwardt.html. Contact: borgwardt@dbs.ifi.lmu.de</description><subject>Algorithms</subject><subject>Computational Biology - methods</subject><subject>Databases, Protein</subject><subject>Enzymes - chemistry</subject><subject>Models, Statistical</subject><subject>Protein Conformation</subject><subject>Protein Structure, Secondary</subject><subject>Sequence Analysis, Protein - methods</subject><subject>Software</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1LAzEQBuAgitbqX5Diwdtqks3H5KhFrVjQg4J4CWk20fRjtya7ov_eSIuil-aSgTwzZHgROiL4lGBVnk1CE2rfxIVpg01nkzYQjOUW6hEmcEExV9u5LoUsGOByD-2nNMWYE8bYLtojXAnCVNlDxX1sWhfqge9q24amHiyjq8KqfA9m8BLN8nUwc7F283SAdryZJ3e4vvvo8eryYTgqxnfXN8PzcWE5x21RWWu8E5JWVAlPhCVgATzxgClgzzhXwIEQwxgIUBVhlacTxUvpDPeeln10spq7jM1b51KrFyFZN5-b2jVd0kIqJvLZCClmIEHyjZAooUAokuHxPzhtuljnbbMBkf9OISOxQjY2KUXn9TKGhYmfmmD9nY_-m49e55Mbj9bTu8nCVb9t60AyKFYgpNZ9_LybOMtLl5Lr0dOzFk_04hYAtCy_AK4-nps</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Borgwardt, Karsten M.</creator><creator>Ong, Cheng Soon</creator><creator>Schönauer, Stefan</creator><creator>Vishwanathan, S. V. N.</creator><creator>Smola, Alex J.</creator><creator>Kriegel, Hans-Peter</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20050601</creationdate><title>Protein function prediction via graph kernels</title><author>Borgwardt, Karsten M. ; Ong, Cheng Soon ; Schönauer, Stefan ; Vishwanathan, S. V. N. ; Smola, Alex J. ; Kriegel, Hans-Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-dccafe672d296f16c18c88f1f80280f455985811a448689d14df2b9537ea5ff23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Computational Biology - methods</topic><topic>Databases, Protein</topic><topic>Enzymes - chemistry</topic><topic>Models, Statistical</topic><topic>Protein Conformation</topic><topic>Protein Structure, Secondary</topic><topic>Sequence Analysis, Protein - methods</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borgwardt, Karsten M.</creatorcontrib><creatorcontrib>Ong, Cheng Soon</creatorcontrib><creatorcontrib>Schönauer, Stefan</creatorcontrib><creatorcontrib>Vishwanathan, S. V. N.</creatorcontrib><creatorcontrib>Smola, Alex J.</creatorcontrib><creatorcontrib>Kriegel, Hans-Peter</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borgwardt, Karsten M.</au><au>Ong, Cheng Soon</au><au>Schönauer, Stefan</au><au>Vishwanathan, S. V. N.</au><au>Smola, Alex J.</au><au>Kriegel, Hans-Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein function prediction via graph kernels</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2005-06-01</date><risdate>2005</risdate><volume>21</volume><issue>suppl-1</issue><spage>i47</spage><epage>i56</epage><pages>i47-i56</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: Computational approaches to protein function prediction infer protein function by finding proteins with similar sequence, structure, surface clefts, chemical properties, amino acid motifs, interaction partners or phylogenetic profiles. We present a new approach that combines sequential, structural and chemical information into one graph model of proteins. We predict functional class membership of enzymes and non-enzymes using graph kernels and support vector machine classification on these protein graphs. Results: Our graph model, derivable from protein sequence and structure only, is competitive with vector models that require additional protein information, such as the size of surface pockets. If we include this extra information into our graph model, our classifier yields significantly higher accuracy levels than the vector models. Hyperkernels allow us to select and to optimally combine the most relevant node attributes in our protein graphs. We have laid the foundation for a protein function prediction system that integrates protein information from various sources efficiently and effectively. Availability: More information available via www.dbs.ifi.lmu.de/Mitarbeiter/borgwardt.html. Contact: borgwardt@dbs.ifi.lmu.de</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>15961493</pmid><doi>10.1093/bioinformatics/bti1007</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2005-06, Vol.21 (suppl-1), p.i47-i56 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_67946666 |
source | Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Computational Biology - methods Databases, Protein Enzymes - chemistry Models, Statistical Protein Conformation Protein Structure, Secondary Sequence Analysis, Protein - methods Software |
title | Protein function prediction via graph kernels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20function%20prediction%20via%20graph%20kernels&rft.jtitle=Bioinformatics&rft.au=Borgwardt,%20Karsten%20M.&rft.date=2005-06-01&rft.volume=21&rft.issue=suppl-1&rft.spage=i47&rft.epage=i56&rft.pages=i47-i56&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/bti1007&rft_dat=%3Cproquest_cross%3E19698691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198645528&rft_id=info:pmid/15961493&rfr_iscdi=true |