Charge Transfer through a Protein−Nano Junction
We address the problem of charge transfer (CT) between a nanosized inorganic system and a protein from a theoretical and numerical perspective. The CT process is described on an atomistic level by applying an electronic Hamiltonian that takes into account the chemical bond, vibronic coupling effects...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2006-05, Vol.110 (18), p.9333-9338 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9338 |
---|---|
container_issue | 18 |
container_start_page | 9333 |
container_title | The journal of physical chemistry. B |
container_volume | 110 |
creator | Utz, Nadine Koslowski, Thorsten |
description | We address the problem of charge transfer (CT) between a nanosized inorganic system and a protein from a theoretical and numerical perspective. The CT process is described on an atomistic level by applying an electronic Hamiltonian that takes into account the chemical bond, vibronic coupling effects, and polarization degrees of freedom. As a structurally well-characterized example, we consider a complex of C60 and its antibody. For this system, we find a novel efficient protein CT mechanism; through-space superexchange is mediated by stacked π orbital systems. The predicted rates are comparable to those obtained for short-range electron tunneling through covalent bonds, the fastest ground-state CT process known for proteins. |
doi_str_mv | 10.1021/jp057244w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67936804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67936804</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-7287849ae8c7bad6d7a75303a69d07d8710f534d3f39092a43bf388c291ad9783</originalsourceid><addsrcrecordid>eNptkMtKw0AUhgdRrFYXvoBko-AiOpfMJUup1gulFq1uh9Nk0qa2mTqToL6Bax_RJzEloW5cHM6B8_H_8CF0RPA5wZRczFeYSxpF71toj3CKw3rkdnsLgkUH7Xs_x5hyqsQu6hAhJJGc7iHSm4GbmmDsoPCZcUE5c7aazgIIRs6WJi9-vr6HUNjgviqSMrfFAdrJYOHNYbu76Ll_Pe7dhoOHm7ve5SAExkkZSqqkimIwKpETSEUqQXKGGYg4xTJVkuCMsyhlGYtxTCFik4wpldCYQBpLxbrotMldOftWGV_qZe4Ts1hAYWzltZAxEwpHNXjWgImz3juT6ZXLl-A-NcF67Udv_NTscRtaTZYm_SNbITUQNkDuS_Ox-YN7rQuZ5Ho8etIvZDTsP_av9Lr8pOEh8XpuK1fUTv4p_gW2nHps</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67936804</pqid></control><display><type>article</type><title>Charge Transfer through a Protein−Nano Junction</title><source>MEDLINE</source><source>ACS Publications</source><creator>Utz, Nadine ; Koslowski, Thorsten</creator><creatorcontrib>Utz, Nadine ; Koslowski, Thorsten</creatorcontrib><description>We address the problem of charge transfer (CT) between a nanosized inorganic system and a protein from a theoretical and numerical perspective. The CT process is described on an atomistic level by applying an electronic Hamiltonian that takes into account the chemical bond, vibronic coupling effects, and polarization degrees of freedom. As a structurally well-characterized example, we consider a complex of C60 and its antibody. For this system, we find a novel efficient protein CT mechanism; through-space superexchange is mediated by stacked π orbital systems. The predicted rates are comparable to those obtained for short-range electron tunneling through covalent bonds, the fastest ground-state CT process known for proteins.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp057244w</identifier><identifier>PMID: 16671752</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding Sites ; Crystallography, X-Ray ; Electron Transport ; Fullerenes - chemistry ; Models, Molecular ; Nanostructures - chemistry ; Protein Binding ; Proteins - chemistry</subject><ispartof>The journal of physical chemistry. B, 2006-05, Vol.110 (18), p.9333-9338</ispartof><rights>Copyright © 2006 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-7287849ae8c7bad6d7a75303a69d07d8710f534d3f39092a43bf388c291ad9783</citedby><cites>FETCH-LOGICAL-a351t-7287849ae8c7bad6d7a75303a69d07d8710f534d3f39092a43bf388c291ad9783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp057244w$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp057244w$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16671752$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Utz, Nadine</creatorcontrib><creatorcontrib>Koslowski, Thorsten</creatorcontrib><title>Charge Transfer through a Protein−Nano Junction</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>We address the problem of charge transfer (CT) between a nanosized inorganic system and a protein from a theoretical and numerical perspective. The CT process is described on an atomistic level by applying an electronic Hamiltonian that takes into account the chemical bond, vibronic coupling effects, and polarization degrees of freedom. As a structurally well-characterized example, we consider a complex of C60 and its antibody. For this system, we find a novel efficient protein CT mechanism; through-space superexchange is mediated by stacked π orbital systems. The predicted rates are comparable to those obtained for short-range electron tunneling through covalent bonds, the fastest ground-state CT process known for proteins.</description><subject>Binding Sites</subject><subject>Crystallography, X-Ray</subject><subject>Electron Transport</subject><subject>Fullerenes - chemistry</subject><subject>Models, Molecular</subject><subject>Nanostructures - chemistry</subject><subject>Protein Binding</subject><subject>Proteins - chemistry</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkMtKw0AUhgdRrFYXvoBko-AiOpfMJUup1gulFq1uh9Nk0qa2mTqToL6Bax_RJzEloW5cHM6B8_H_8CF0RPA5wZRczFeYSxpF71toj3CKw3rkdnsLgkUH7Xs_x5hyqsQu6hAhJJGc7iHSm4GbmmDsoPCZcUE5c7aazgIIRs6WJi9-vr6HUNjgviqSMrfFAdrJYOHNYbu76Ll_Pe7dhoOHm7ve5SAExkkZSqqkimIwKpETSEUqQXKGGYg4xTJVkuCMsyhlGYtxTCFik4wpldCYQBpLxbrotMldOftWGV_qZe4Ts1hAYWzltZAxEwpHNXjWgImz3juT6ZXLl-A-NcF67Udv_NTscRtaTZYm_SNbITUQNkDuS_Ox-YN7rQuZ5Ho8etIvZDTsP_av9Lr8pOEh8XpuK1fUTv4p_gW2nHps</recordid><startdate>20060511</startdate><enddate>20060511</enddate><creator>Utz, Nadine</creator><creator>Koslowski, Thorsten</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060511</creationdate><title>Charge Transfer through a Protein−Nano Junction</title><author>Utz, Nadine ; Koslowski, Thorsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-7287849ae8c7bad6d7a75303a69d07d8710f534d3f39092a43bf388c291ad9783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Binding Sites</topic><topic>Crystallography, X-Ray</topic><topic>Electron Transport</topic><topic>Fullerenes - chemistry</topic><topic>Models, Molecular</topic><topic>Nanostructures - chemistry</topic><topic>Protein Binding</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Utz, Nadine</creatorcontrib><creatorcontrib>Koslowski, Thorsten</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Utz, Nadine</au><au>Koslowski, Thorsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge Transfer through a Protein−Nano Junction</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2006-05-11</date><risdate>2006</risdate><volume>110</volume><issue>18</issue><spage>9333</spage><epage>9338</epage><pages>9333-9338</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>We address the problem of charge transfer (CT) between a nanosized inorganic system and a protein from a theoretical and numerical perspective. The CT process is described on an atomistic level by applying an electronic Hamiltonian that takes into account the chemical bond, vibronic coupling effects, and polarization degrees of freedom. As a structurally well-characterized example, we consider a complex of C60 and its antibody. For this system, we find a novel efficient protein CT mechanism; through-space superexchange is mediated by stacked π orbital systems. The predicted rates are comparable to those obtained for short-range electron tunneling through covalent bonds, the fastest ground-state CT process known for proteins.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>16671752</pmid><doi>10.1021/jp057244w</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2006-05, Vol.110 (18), p.9333-9338 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_67936804 |
source | MEDLINE; ACS Publications |
subjects | Binding Sites Crystallography, X-Ray Electron Transport Fullerenes - chemistry Models, Molecular Nanostructures - chemistry Protein Binding Proteins - chemistry |
title | Charge Transfer through a Protein−Nano Junction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A08%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20Transfer%20through%20a%20Protein%E2%88%92Nano%20Junction&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Utz,%20Nadine&rft.date=2006-05-11&rft.volume=110&rft.issue=18&rft.spage=9333&rft.epage=9338&rft.pages=9333-9338&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp057244w&rft_dat=%3Cproquest_cross%3E67936804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67936804&rft_id=info:pmid/16671752&rfr_iscdi=true |