Charge Transfer through a Protein−Nano Junction

We address the problem of charge transfer (CT) between a nanosized inorganic system and a protein from a theoretical and numerical perspective. The CT process is described on an atomistic level by applying an electronic Hamiltonian that takes into account the chemical bond, vibronic coupling effects...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2006-05, Vol.110 (18), p.9333-9338
Hauptverfasser: Utz, Nadine, Koslowski, Thorsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9338
container_issue 18
container_start_page 9333
container_title The journal of physical chemistry. B
container_volume 110
creator Utz, Nadine
Koslowski, Thorsten
description We address the problem of charge transfer (CT) between a nanosized inorganic system and a protein from a theoretical and numerical perspective. The CT process is described on an atomistic level by applying an electronic Hamiltonian that takes into account the chemical bond, vibronic coupling effects, and polarization degrees of freedom. As a structurally well-characterized example, we consider a complex of C60 and its antibody. For this system, we find a novel efficient protein CT mechanism; through-space superexchange is mediated by stacked π orbital systems. The predicted rates are comparable to those obtained for short-range electron tunneling through covalent bonds, the fastest ground-state CT process known for proteins.
doi_str_mv 10.1021/jp057244w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67936804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67936804</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-7287849ae8c7bad6d7a75303a69d07d8710f534d3f39092a43bf388c291ad9783</originalsourceid><addsrcrecordid>eNptkMtKw0AUhgdRrFYXvoBko-AiOpfMJUup1gulFq1uh9Nk0qa2mTqToL6Bax_RJzEloW5cHM6B8_H_8CF0RPA5wZRczFeYSxpF71toj3CKw3rkdnsLgkUH7Xs_x5hyqsQu6hAhJJGc7iHSm4GbmmDsoPCZcUE5c7aazgIIRs6WJi9-vr6HUNjgviqSMrfFAdrJYOHNYbu76Ll_Pe7dhoOHm7ve5SAExkkZSqqkimIwKpETSEUqQXKGGYg4xTJVkuCMsyhlGYtxTCFik4wpldCYQBpLxbrotMldOftWGV_qZe4Ts1hAYWzltZAxEwpHNXjWgImz3juT6ZXLl-A-NcF67Udv_NTscRtaTZYm_SNbITUQNkDuS_Ox-YN7rQuZ5Ho8etIvZDTsP_av9Lr8pOEh8XpuK1fUTv4p_gW2nHps</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67936804</pqid></control><display><type>article</type><title>Charge Transfer through a Protein−Nano Junction</title><source>MEDLINE</source><source>ACS Publications</source><creator>Utz, Nadine ; Koslowski, Thorsten</creator><creatorcontrib>Utz, Nadine ; Koslowski, Thorsten</creatorcontrib><description>We address the problem of charge transfer (CT) between a nanosized inorganic system and a protein from a theoretical and numerical perspective. The CT process is described on an atomistic level by applying an electronic Hamiltonian that takes into account the chemical bond, vibronic coupling effects, and polarization degrees of freedom. As a structurally well-characterized example, we consider a complex of C60 and its antibody. For this system, we find a novel efficient protein CT mechanism; through-space superexchange is mediated by stacked π orbital systems. The predicted rates are comparable to those obtained for short-range electron tunneling through covalent bonds, the fastest ground-state CT process known for proteins.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp057244w</identifier><identifier>PMID: 16671752</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding Sites ; Crystallography, X-Ray ; Electron Transport ; Fullerenes - chemistry ; Models, Molecular ; Nanostructures - chemistry ; Protein Binding ; Proteins - chemistry</subject><ispartof>The journal of physical chemistry. B, 2006-05, Vol.110 (18), p.9333-9338</ispartof><rights>Copyright © 2006 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-7287849ae8c7bad6d7a75303a69d07d8710f534d3f39092a43bf388c291ad9783</citedby><cites>FETCH-LOGICAL-a351t-7287849ae8c7bad6d7a75303a69d07d8710f534d3f39092a43bf388c291ad9783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp057244w$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp057244w$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16671752$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Utz, Nadine</creatorcontrib><creatorcontrib>Koslowski, Thorsten</creatorcontrib><title>Charge Transfer through a Protein−Nano Junction</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>We address the problem of charge transfer (CT) between a nanosized inorganic system and a protein from a theoretical and numerical perspective. The CT process is described on an atomistic level by applying an electronic Hamiltonian that takes into account the chemical bond, vibronic coupling effects, and polarization degrees of freedom. As a structurally well-characterized example, we consider a complex of C60 and its antibody. For this system, we find a novel efficient protein CT mechanism; through-space superexchange is mediated by stacked π orbital systems. The predicted rates are comparable to those obtained for short-range electron tunneling through covalent bonds, the fastest ground-state CT process known for proteins.</description><subject>Binding Sites</subject><subject>Crystallography, X-Ray</subject><subject>Electron Transport</subject><subject>Fullerenes - chemistry</subject><subject>Models, Molecular</subject><subject>Nanostructures - chemistry</subject><subject>Protein Binding</subject><subject>Proteins - chemistry</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkMtKw0AUhgdRrFYXvoBko-AiOpfMJUup1gulFq1uh9Nk0qa2mTqToL6Bax_RJzEloW5cHM6B8_H_8CF0RPA5wZRczFeYSxpF71toj3CKw3rkdnsLgkUH7Xs_x5hyqsQu6hAhJJGc7iHSm4GbmmDsoPCZcUE5c7aazgIIRs6WJi9-vr6HUNjgviqSMrfFAdrJYOHNYbu76Ll_Pe7dhoOHm7ve5SAExkkZSqqkimIwKpETSEUqQXKGGYg4xTJVkuCMsyhlGYtxTCFik4wpldCYQBpLxbrotMldOftWGV_qZe4Ts1hAYWzltZAxEwpHNXjWgImz3juT6ZXLl-A-NcF67Udv_NTscRtaTZYm_SNbITUQNkDuS_Ox-YN7rQuZ5Ho8etIvZDTsP_av9Lr8pOEh8XpuK1fUTv4p_gW2nHps</recordid><startdate>20060511</startdate><enddate>20060511</enddate><creator>Utz, Nadine</creator><creator>Koslowski, Thorsten</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060511</creationdate><title>Charge Transfer through a Protein−Nano Junction</title><author>Utz, Nadine ; Koslowski, Thorsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-7287849ae8c7bad6d7a75303a69d07d8710f534d3f39092a43bf388c291ad9783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Binding Sites</topic><topic>Crystallography, X-Ray</topic><topic>Electron Transport</topic><topic>Fullerenes - chemistry</topic><topic>Models, Molecular</topic><topic>Nanostructures - chemistry</topic><topic>Protein Binding</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Utz, Nadine</creatorcontrib><creatorcontrib>Koslowski, Thorsten</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Utz, Nadine</au><au>Koslowski, Thorsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge Transfer through a Protein−Nano Junction</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2006-05-11</date><risdate>2006</risdate><volume>110</volume><issue>18</issue><spage>9333</spage><epage>9338</epage><pages>9333-9338</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>We address the problem of charge transfer (CT) between a nanosized inorganic system and a protein from a theoretical and numerical perspective. The CT process is described on an atomistic level by applying an electronic Hamiltonian that takes into account the chemical bond, vibronic coupling effects, and polarization degrees of freedom. As a structurally well-characterized example, we consider a complex of C60 and its antibody. For this system, we find a novel efficient protein CT mechanism; through-space superexchange is mediated by stacked π orbital systems. The predicted rates are comparable to those obtained for short-range electron tunneling through covalent bonds, the fastest ground-state CT process known for proteins.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>16671752</pmid><doi>10.1021/jp057244w</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2006-05, Vol.110 (18), p.9333-9338
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_67936804
source MEDLINE; ACS Publications
subjects Binding Sites
Crystallography, X-Ray
Electron Transport
Fullerenes - chemistry
Models, Molecular
Nanostructures - chemistry
Protein Binding
Proteins - chemistry
title Charge Transfer through a Protein−Nano Junction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A08%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20Transfer%20through%20a%20Protein%E2%88%92Nano%20Junction&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Utz,%20Nadine&rft.date=2006-05-11&rft.volume=110&rft.issue=18&rft.spage=9333&rft.epage=9338&rft.pages=9333-9338&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp057244w&rft_dat=%3Cproquest_cross%3E67936804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67936804&rft_id=info:pmid/16671752&rfr_iscdi=true