Integral Projection Models for Species with Complex Demography
Matrix projection models occupy a central role in population and conservation biology. Matrix models divide a population into discrete classes, even if the structuring trait exhibits continuous variation (e.g., body size). The integral projection model (IPM) avoids discrete classes and potential art...
Gespeichert in:
Veröffentlicht in: | The American naturalist 2006-03, Vol.167 (3), p.410-428 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 428 |
---|---|
container_issue | 3 |
container_start_page | 410 |
container_title | The American naturalist |
container_volume | 167 |
creator | Ellner, Stephen P. Rees, Mark |
description | Matrix projection models occupy a central role in population and conservation biology. Matrix models divide a population into discrete classes, even if the structuring trait exhibits continuous variation (e.g., body size). The integral projection model (IPM) avoids discrete classes and potential artifacts from arbitrary class divisions, facilitates parsimonious modeling based on smooth relationships between individual state and demographic performance, and can be implemented with standard matrix software. Here, we extend the IPM to species with complex demographic attributes, including dormant and active life stages, cross‐classification by several attributes (e.g., size, age, and condition), and changes between discrete and continuous structure over the life cycle. We present a general model encompassing these cases, numerical methods, and theoretical results, including stable population growth and sensitivity/elasticity analysis for density‐independent models, local stability analysis in density‐dependent models, and optimal/evolutionarily stable strategy life‐history analysis. Our presentation centers on an IPM for the thistleOnopordum illyricumbased on a 6‐year field study. Flowering and death probabilities are size and age dependent, and individuals also vary in a latent attribute affecting survival, but a predictively accurate IPM is completely parameterized by fitting a few regression equations. Azip archiveof R scripts illustrating our suggested methods is also provided. |
doi_str_mv | 10.1086/499438 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67934144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/499438</jstor_id><sourcerecordid>10.1086/499438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-f785d7335436b158a4dae24c0a736d1a3e31c0c7de1e29e685ce14f57918e88a3</originalsourceid><addsrcrecordid>eNqF0MtKxDAUBuAgio63JxApLtxVkzknt40g4xUUBXVdYnqqHdpJTTqob29lBgU3rkLIl_9wfsZ2BT8S3KhjtBbBrLCRkKBzCWNYZSPOOeRcoN5gmylNh6tFK9fZhlBKA6AdsZPrWU8v0TXZfQxT8n0dZtltKKlJWRVi9tCRryll73X_mk1C2zX0kZ1RG4Y_3evnNlurXJNoZ3lusaeL88fJVX5zd3k9Ob3JPRjT55U2shwmSgT1LKRxWDoao-dOgyqFAwLhudclCRpbUkZ6ElhJbYUhYxxsscNFbhfD25xSX7R18tQ0bkZhngqlLaBA_BcKiziWSgzw4A-chnmcDUsMxij8Hv2b5mNIKVJVdLFuXfwsBC--ey8WvQ9wf5k2f26p_GXLogewtwDT1If48w4GUSuAL0KFg-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198647918</pqid></control><display><type>article</type><title>Integral Projection Models for Species with Complex Demography</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ellner, Stephen P. ; Rees, Mark</creator><contributor>Donald L. DeAngelis ; William F. Morris</contributor><creatorcontrib>Ellner, Stephen P. ; Rees, Mark ; Donald L. DeAngelis ; William F. Morris</creatorcontrib><description>Matrix projection models occupy a central role in population and conservation biology. Matrix models divide a population into discrete classes, even if the structuring trait exhibits continuous variation (e.g., body size). The integral projection model (IPM) avoids discrete classes and potential artifacts from arbitrary class divisions, facilitates parsimonious modeling based on smooth relationships between individual state and demographic performance, and can be implemented with standard matrix software. Here, we extend the IPM to species with complex demographic attributes, including dormant and active life stages, cross‐classification by several attributes (e.g., size, age, and condition), and changes between discrete and continuous structure over the life cycle. We present a general model encompassing these cases, numerical methods, and theoretical results, including stable population growth and sensitivity/elasticity analysis for density‐independent models, local stability analysis in density‐dependent models, and optimal/evolutionarily stable strategy life‐history analysis. Our presentation centers on an IPM for the thistleOnopordum illyricumbased on a 6‐year field study. Flowering and death probabilities are size and age dependent, and individuals also vary in a latent attribute affecting survival, but a predictively accurate IPM is completely parameterized by fitting a few regression equations. Azip archiveof R scripts illustrating our suggested methods is also provided.</description><identifier>ISSN: 0003-0147</identifier><identifier>EISSN: 1537-5323</identifier><identifier>DOI: 10.1086/499438</identifier><identifier>PMID: 16673349</identifier><identifier>CODEN: AMNTA4</identifier><language>eng</language><publisher>United States: The University of Chicago Press</publisher><subject>Age ; Biological Evolution ; Biology ; Computer Simulation ; Demography ; Fecundity ; Field study ; Flowering ; Life cycles ; Matrix ; Modeling ; Models, Biological ; Onopordum ; Onopordum - anatomy & histology ; Onopordum - classification ; Onopordum - physiology ; Onopordum illyricum ; Parametric models ; Plants ; Population density ; Population distributions ; Population Growth ; Probability ; Reproduction ; Seedlings ; Seedlings - anatomy & histology ; Seedlings - classification ; Seedlings - physiology ; Sensitivity analysis ; Theory ; Variables</subject><ispartof>The American naturalist, 2006-03, Vol.167 (3), p.410-428</ispartof><rights>2006 by The University of Chicago.</rights><rights>Copyright University of Chicago, acting through its Press Mar 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-f785d7335436b158a4dae24c0a736d1a3e31c0c7de1e29e685ce14f57918e88a3</citedby><cites>FETCH-LOGICAL-c388t-f785d7335436b158a4dae24c0a736d1a3e31c0c7de1e29e685ce14f57918e88a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,799,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16673349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Donald L. DeAngelis</contributor><contributor>William F. Morris</contributor><creatorcontrib>Ellner, Stephen P.</creatorcontrib><creatorcontrib>Rees, Mark</creatorcontrib><title>Integral Projection Models for Species with Complex Demography</title><title>The American naturalist</title><addtitle>Am Nat</addtitle><description>Matrix projection models occupy a central role in population and conservation biology. Matrix models divide a population into discrete classes, even if the structuring trait exhibits continuous variation (e.g., body size). The integral projection model (IPM) avoids discrete classes and potential artifacts from arbitrary class divisions, facilitates parsimonious modeling based on smooth relationships between individual state and demographic performance, and can be implemented with standard matrix software. Here, we extend the IPM to species with complex demographic attributes, including dormant and active life stages, cross‐classification by several attributes (e.g., size, age, and condition), and changes between discrete and continuous structure over the life cycle. We present a general model encompassing these cases, numerical methods, and theoretical results, including stable population growth and sensitivity/elasticity analysis for density‐independent models, local stability analysis in density‐dependent models, and optimal/evolutionarily stable strategy life‐history analysis. Our presentation centers on an IPM for the thistleOnopordum illyricumbased on a 6‐year field study. Flowering and death probabilities are size and age dependent, and individuals also vary in a latent attribute affecting survival, but a predictively accurate IPM is completely parameterized by fitting a few regression equations. Azip archiveof R scripts illustrating our suggested methods is also provided.</description><subject>Age</subject><subject>Biological Evolution</subject><subject>Biology</subject><subject>Computer Simulation</subject><subject>Demography</subject><subject>Fecundity</subject><subject>Field study</subject><subject>Flowering</subject><subject>Life cycles</subject><subject>Matrix</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Onopordum</subject><subject>Onopordum - anatomy & histology</subject><subject>Onopordum - classification</subject><subject>Onopordum - physiology</subject><subject>Onopordum illyricum</subject><subject>Parametric models</subject><subject>Plants</subject><subject>Population density</subject><subject>Population distributions</subject><subject>Population Growth</subject><subject>Probability</subject><subject>Reproduction</subject><subject>Seedlings</subject><subject>Seedlings - anatomy & histology</subject><subject>Seedlings - classification</subject><subject>Seedlings - physiology</subject><subject>Sensitivity analysis</subject><subject>Theory</subject><subject>Variables</subject><issn>0003-0147</issn><issn>1537-5323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0MtKxDAUBuAgio63JxApLtxVkzknt40g4xUUBXVdYnqqHdpJTTqob29lBgU3rkLIl_9wfsZ2BT8S3KhjtBbBrLCRkKBzCWNYZSPOOeRcoN5gmylNh6tFK9fZhlBKA6AdsZPrWU8v0TXZfQxT8n0dZtltKKlJWRVi9tCRryll73X_mk1C2zX0kZ1RG4Y_3evnNlurXJNoZ3lusaeL88fJVX5zd3k9Ob3JPRjT55U2shwmSgT1LKRxWDoao-dOgyqFAwLhudclCRpbUkZ6ElhJbYUhYxxsscNFbhfD25xSX7R18tQ0bkZhngqlLaBA_BcKiziWSgzw4A-chnmcDUsMxij8Hv2b5mNIKVJVdLFuXfwsBC--ey8WvQ9wf5k2f26p_GXLogewtwDT1If48w4GUSuAL0KFg-A</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Ellner, Stephen P.</creator><creator>Rees, Mark</creator><general>The University of Chicago Press</general><general>University of Chicago, acting through its Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7U6</scope><scope>7X8</scope></search><sort><creationdate>20060301</creationdate><title>Integral Projection Models for Species with Complex Demography</title><author>Ellner, Stephen P. ; Rees, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-f785d7335436b158a4dae24c0a736d1a3e31c0c7de1e29e685ce14f57918e88a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Age</topic><topic>Biological Evolution</topic><topic>Biology</topic><topic>Computer Simulation</topic><topic>Demography</topic><topic>Fecundity</topic><topic>Field study</topic><topic>Flowering</topic><topic>Life cycles</topic><topic>Matrix</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Onopordum</topic><topic>Onopordum - anatomy & histology</topic><topic>Onopordum - classification</topic><topic>Onopordum - physiology</topic><topic>Onopordum illyricum</topic><topic>Parametric models</topic><topic>Plants</topic><topic>Population density</topic><topic>Population distributions</topic><topic>Population Growth</topic><topic>Probability</topic><topic>Reproduction</topic><topic>Seedlings</topic><topic>Seedlings - anatomy & histology</topic><topic>Seedlings - classification</topic><topic>Seedlings - physiology</topic><topic>Sensitivity analysis</topic><topic>Theory</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellner, Stephen P.</creatorcontrib><creatorcontrib>Rees, Mark</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The American naturalist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ellner, Stephen P.</au><au>Rees, Mark</au><au>Donald L. DeAngelis</au><au>William F. Morris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integral Projection Models for Species with Complex Demography</atitle><jtitle>The American naturalist</jtitle><addtitle>Am Nat</addtitle><date>2006-03-01</date><risdate>2006</risdate><volume>167</volume><issue>3</issue><spage>410</spage><epage>428</epage><pages>410-428</pages><issn>0003-0147</issn><eissn>1537-5323</eissn><coden>AMNTA4</coden><abstract>Matrix projection models occupy a central role in population and conservation biology. Matrix models divide a population into discrete classes, even if the structuring trait exhibits continuous variation (e.g., body size). The integral projection model (IPM) avoids discrete classes and potential artifacts from arbitrary class divisions, facilitates parsimonious modeling based on smooth relationships between individual state and demographic performance, and can be implemented with standard matrix software. Here, we extend the IPM to species with complex demographic attributes, including dormant and active life stages, cross‐classification by several attributes (e.g., size, age, and condition), and changes between discrete and continuous structure over the life cycle. We present a general model encompassing these cases, numerical methods, and theoretical results, including stable population growth and sensitivity/elasticity analysis for density‐independent models, local stability analysis in density‐dependent models, and optimal/evolutionarily stable strategy life‐history analysis. Our presentation centers on an IPM for the thistleOnopordum illyricumbased on a 6‐year field study. Flowering and death probabilities are size and age dependent, and individuals also vary in a latent attribute affecting survival, but a predictively accurate IPM is completely parameterized by fitting a few regression equations. Azip archiveof R scripts illustrating our suggested methods is also provided.</abstract><cop>United States</cop><pub>The University of Chicago Press</pub><pmid>16673349</pmid><doi>10.1086/499438</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-0147 |
ispartof | The American naturalist, 2006-03, Vol.167 (3), p.410-428 |
issn | 0003-0147 1537-5323 |
language | eng |
recordid | cdi_proquest_miscellaneous_67934144 |
source | Jstor Complete Legacy; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Age Biological Evolution Biology Computer Simulation Demography Fecundity Field study Flowering Life cycles Matrix Modeling Models, Biological Onopordum Onopordum - anatomy & histology Onopordum - classification Onopordum - physiology Onopordum illyricum Parametric models Plants Population density Population distributions Population Growth Probability Reproduction Seedlings Seedlings - anatomy & histology Seedlings - classification Seedlings - physiology Sensitivity analysis Theory Variables |
title | Integral Projection Models for Species with Complex Demography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integral%20Projection%20Models%20for%20Species%20with%20Complex%20Demography&rft.jtitle=The%20American%20naturalist&rft.au=Ellner,%20Stephen%C2%A0P.&rft.date=2006-03-01&rft.volume=167&rft.issue=3&rft.spage=410&rft.epage=428&rft.pages=410-428&rft.issn=0003-0147&rft.eissn=1537-5323&rft.coden=AMNTA4&rft_id=info:doi/10.1086/499438&rft_dat=%3Cjstor_proqu%3E10.1086/499438%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198647918&rft_id=info:pmid/16673349&rft_jstor_id=10.1086/499438&rfr_iscdi=true |