Integral Projection Models for Species with Complex Demography

Matrix projection models occupy a central role in population and conservation biology. Matrix models divide a population into discrete classes, even if the structuring trait exhibits continuous variation (e.g., body size). The integral projection model (IPM) avoids discrete classes and potential art...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American naturalist 2006-03, Vol.167 (3), p.410-428
Hauptverfasser: Ellner, Stephen P., Rees, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 428
container_issue 3
container_start_page 410
container_title The American naturalist
container_volume 167
creator Ellner, Stephen P.
Rees, Mark
description Matrix projection models occupy a central role in population and conservation biology. Matrix models divide a population into discrete classes, even if the structuring trait exhibits continuous variation (e.g., body size). The integral projection model (IPM) avoids discrete classes and potential artifacts from arbitrary class divisions, facilitates parsimonious modeling based on smooth relationships between individual state and demographic performance, and can be implemented with standard matrix software. Here, we extend the IPM to species with complex demographic attributes, including dormant and active life stages, cross‐classification by several attributes (e.g., size, age, and condition), and changes between discrete and continuous structure over the life cycle. We present a general model encompassing these cases, numerical methods, and theoretical results, including stable population growth and sensitivity/elasticity analysis for density‐independent models, local stability analysis in density‐dependent models, and optimal/evolutionarily stable strategy life‐history analysis. Our presentation centers on an IPM for the thistleOnopordum illyricumbased on a 6‐year field study. Flowering and death probabilities are size and age dependent, and individuals also vary in a latent attribute affecting survival, but a predictively accurate IPM is completely parameterized by fitting a few regression equations. Azip archiveof R scripts illustrating our suggested methods is also provided.
doi_str_mv 10.1086/499438
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67934144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/499438</jstor_id><sourcerecordid>10.1086/499438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-f785d7335436b158a4dae24c0a736d1a3e31c0c7de1e29e685ce14f57918e88a3</originalsourceid><addsrcrecordid>eNqF0MtKxDAUBuAgio63JxApLtxVkzknt40g4xUUBXVdYnqqHdpJTTqob29lBgU3rkLIl_9wfsZ2BT8S3KhjtBbBrLCRkKBzCWNYZSPOOeRcoN5gmylNh6tFK9fZhlBKA6AdsZPrWU8v0TXZfQxT8n0dZtltKKlJWRVi9tCRryll73X_mk1C2zX0kZ1RG4Y_3evnNlurXJNoZ3lusaeL88fJVX5zd3k9Ob3JPRjT55U2shwmSgT1LKRxWDoao-dOgyqFAwLhudclCRpbUkZ6ElhJbYUhYxxsscNFbhfD25xSX7R18tQ0bkZhngqlLaBA_BcKiziWSgzw4A-chnmcDUsMxij8Hv2b5mNIKVJVdLFuXfwsBC--ey8WvQ9wf5k2f26p_GXLogewtwDT1If48w4GUSuAL0KFg-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198647918</pqid></control><display><type>article</type><title>Integral Projection Models for Species with Complex Demography</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ellner, Stephen P. ; Rees, Mark</creator><contributor>Donald L. DeAngelis ; William F. Morris</contributor><creatorcontrib>Ellner, Stephen P. ; Rees, Mark ; Donald L. DeAngelis ; William F. Morris</creatorcontrib><description>Matrix projection models occupy a central role in population and conservation biology. Matrix models divide a population into discrete classes, even if the structuring trait exhibits continuous variation (e.g., body size). The integral projection model (IPM) avoids discrete classes and potential artifacts from arbitrary class divisions, facilitates parsimonious modeling based on smooth relationships between individual state and demographic performance, and can be implemented with standard matrix software. Here, we extend the IPM to species with complex demographic attributes, including dormant and active life stages, cross‐classification by several attributes (e.g., size, age, and condition), and changes between discrete and continuous structure over the life cycle. We present a general model encompassing these cases, numerical methods, and theoretical results, including stable population growth and sensitivity/elasticity analysis for density‐independent models, local stability analysis in density‐dependent models, and optimal/evolutionarily stable strategy life‐history analysis. Our presentation centers on an IPM for the thistleOnopordum illyricumbased on a 6‐year field study. Flowering and death probabilities are size and age dependent, and individuals also vary in a latent attribute affecting survival, but a predictively accurate IPM is completely parameterized by fitting a few regression equations. Azip archiveof R scripts illustrating our suggested methods is also provided.</description><identifier>ISSN: 0003-0147</identifier><identifier>EISSN: 1537-5323</identifier><identifier>DOI: 10.1086/499438</identifier><identifier>PMID: 16673349</identifier><identifier>CODEN: AMNTA4</identifier><language>eng</language><publisher>United States: The University of Chicago Press</publisher><subject>Age ; Biological Evolution ; Biology ; Computer Simulation ; Demography ; Fecundity ; Field study ; Flowering ; Life cycles ; Matrix ; Modeling ; Models, Biological ; Onopordum ; Onopordum - anatomy &amp; histology ; Onopordum - classification ; Onopordum - physiology ; Onopordum illyricum ; Parametric models ; Plants ; Population density ; Population distributions ; Population Growth ; Probability ; Reproduction ; Seedlings ; Seedlings - anatomy &amp; histology ; Seedlings - classification ; Seedlings - physiology ; Sensitivity analysis ; Theory ; Variables</subject><ispartof>The American naturalist, 2006-03, Vol.167 (3), p.410-428</ispartof><rights>2006 by The University of Chicago.</rights><rights>Copyright University of Chicago, acting through its Press Mar 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-f785d7335436b158a4dae24c0a736d1a3e31c0c7de1e29e685ce14f57918e88a3</citedby><cites>FETCH-LOGICAL-c388t-f785d7335436b158a4dae24c0a736d1a3e31c0c7de1e29e685ce14f57918e88a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,799,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16673349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Donald L. DeAngelis</contributor><contributor>William F. Morris</contributor><creatorcontrib>Ellner, Stephen P.</creatorcontrib><creatorcontrib>Rees, Mark</creatorcontrib><title>Integral Projection Models for Species with Complex Demography</title><title>The American naturalist</title><addtitle>Am Nat</addtitle><description>Matrix projection models occupy a central role in population and conservation biology. Matrix models divide a population into discrete classes, even if the structuring trait exhibits continuous variation (e.g., body size). The integral projection model (IPM) avoids discrete classes and potential artifacts from arbitrary class divisions, facilitates parsimonious modeling based on smooth relationships between individual state and demographic performance, and can be implemented with standard matrix software. Here, we extend the IPM to species with complex demographic attributes, including dormant and active life stages, cross‐classification by several attributes (e.g., size, age, and condition), and changes between discrete and continuous structure over the life cycle. We present a general model encompassing these cases, numerical methods, and theoretical results, including stable population growth and sensitivity/elasticity analysis for density‐independent models, local stability analysis in density‐dependent models, and optimal/evolutionarily stable strategy life‐history analysis. Our presentation centers on an IPM for the thistleOnopordum illyricumbased on a 6‐year field study. Flowering and death probabilities are size and age dependent, and individuals also vary in a latent attribute affecting survival, but a predictively accurate IPM is completely parameterized by fitting a few regression equations. Azip archiveof R scripts illustrating our suggested methods is also provided.</description><subject>Age</subject><subject>Biological Evolution</subject><subject>Biology</subject><subject>Computer Simulation</subject><subject>Demography</subject><subject>Fecundity</subject><subject>Field study</subject><subject>Flowering</subject><subject>Life cycles</subject><subject>Matrix</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Onopordum</subject><subject>Onopordum - anatomy &amp; histology</subject><subject>Onopordum - classification</subject><subject>Onopordum - physiology</subject><subject>Onopordum illyricum</subject><subject>Parametric models</subject><subject>Plants</subject><subject>Population density</subject><subject>Population distributions</subject><subject>Population Growth</subject><subject>Probability</subject><subject>Reproduction</subject><subject>Seedlings</subject><subject>Seedlings - anatomy &amp; histology</subject><subject>Seedlings - classification</subject><subject>Seedlings - physiology</subject><subject>Sensitivity analysis</subject><subject>Theory</subject><subject>Variables</subject><issn>0003-0147</issn><issn>1537-5323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0MtKxDAUBuAgio63JxApLtxVkzknt40g4xUUBXVdYnqqHdpJTTqob29lBgU3rkLIl_9wfsZ2BT8S3KhjtBbBrLCRkKBzCWNYZSPOOeRcoN5gmylNh6tFK9fZhlBKA6AdsZPrWU8v0TXZfQxT8n0dZtltKKlJWRVi9tCRryll73X_mk1C2zX0kZ1RG4Y_3evnNlurXJNoZ3lusaeL88fJVX5zd3k9Ob3JPRjT55U2shwmSgT1LKRxWDoao-dOgyqFAwLhudclCRpbUkZ6ElhJbYUhYxxsscNFbhfD25xSX7R18tQ0bkZhngqlLaBA_BcKiziWSgzw4A-chnmcDUsMxij8Hv2b5mNIKVJVdLFuXfwsBC--ey8WvQ9wf5k2f26p_GXLogewtwDT1If48w4GUSuAL0KFg-A</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Ellner, Stephen P.</creator><creator>Rees, Mark</creator><general>The University of Chicago Press</general><general>University of Chicago, acting through its Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7U6</scope><scope>7X8</scope></search><sort><creationdate>20060301</creationdate><title>Integral Projection Models for Species with Complex Demography</title><author>Ellner, Stephen P. ; Rees, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-f785d7335436b158a4dae24c0a736d1a3e31c0c7de1e29e685ce14f57918e88a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Age</topic><topic>Biological Evolution</topic><topic>Biology</topic><topic>Computer Simulation</topic><topic>Demography</topic><topic>Fecundity</topic><topic>Field study</topic><topic>Flowering</topic><topic>Life cycles</topic><topic>Matrix</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Onopordum</topic><topic>Onopordum - anatomy &amp; histology</topic><topic>Onopordum - classification</topic><topic>Onopordum - physiology</topic><topic>Onopordum illyricum</topic><topic>Parametric models</topic><topic>Plants</topic><topic>Population density</topic><topic>Population distributions</topic><topic>Population Growth</topic><topic>Probability</topic><topic>Reproduction</topic><topic>Seedlings</topic><topic>Seedlings - anatomy &amp; histology</topic><topic>Seedlings - classification</topic><topic>Seedlings - physiology</topic><topic>Sensitivity analysis</topic><topic>Theory</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellner, Stephen P.</creatorcontrib><creatorcontrib>Rees, Mark</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The American naturalist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ellner, Stephen P.</au><au>Rees, Mark</au><au>Donald L. DeAngelis</au><au>William F. Morris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integral Projection Models for Species with Complex Demography</atitle><jtitle>The American naturalist</jtitle><addtitle>Am Nat</addtitle><date>2006-03-01</date><risdate>2006</risdate><volume>167</volume><issue>3</issue><spage>410</spage><epage>428</epage><pages>410-428</pages><issn>0003-0147</issn><eissn>1537-5323</eissn><coden>AMNTA4</coden><abstract>Matrix projection models occupy a central role in population and conservation biology. Matrix models divide a population into discrete classes, even if the structuring trait exhibits continuous variation (e.g., body size). The integral projection model (IPM) avoids discrete classes and potential artifacts from arbitrary class divisions, facilitates parsimonious modeling based on smooth relationships between individual state and demographic performance, and can be implemented with standard matrix software. Here, we extend the IPM to species with complex demographic attributes, including dormant and active life stages, cross‐classification by several attributes (e.g., size, age, and condition), and changes between discrete and continuous structure over the life cycle. We present a general model encompassing these cases, numerical methods, and theoretical results, including stable population growth and sensitivity/elasticity analysis for density‐independent models, local stability analysis in density‐dependent models, and optimal/evolutionarily stable strategy life‐history analysis. Our presentation centers on an IPM for the thistleOnopordum illyricumbased on a 6‐year field study. Flowering and death probabilities are size and age dependent, and individuals also vary in a latent attribute affecting survival, but a predictively accurate IPM is completely parameterized by fitting a few regression equations. Azip archiveof R scripts illustrating our suggested methods is also provided.</abstract><cop>United States</cop><pub>The University of Chicago Press</pub><pmid>16673349</pmid><doi>10.1086/499438</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-0147
ispartof The American naturalist, 2006-03, Vol.167 (3), p.410-428
issn 0003-0147
1537-5323
language eng
recordid cdi_proquest_miscellaneous_67934144
source Jstor Complete Legacy; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Age
Biological Evolution
Biology
Computer Simulation
Demography
Fecundity
Field study
Flowering
Life cycles
Matrix
Modeling
Models, Biological
Onopordum
Onopordum - anatomy & histology
Onopordum - classification
Onopordum - physiology
Onopordum illyricum
Parametric models
Plants
Population density
Population distributions
Population Growth
Probability
Reproduction
Seedlings
Seedlings - anatomy & histology
Seedlings - classification
Seedlings - physiology
Sensitivity analysis
Theory
Variables
title Integral Projection Models for Species with Complex Demography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integral%20Projection%20Models%20for%20Species%20with%20Complex%20Demography&rft.jtitle=The%20American%20naturalist&rft.au=Ellner,%20Stephen%C2%A0P.&rft.date=2006-03-01&rft.volume=167&rft.issue=3&rft.spage=410&rft.epage=428&rft.pages=410-428&rft.issn=0003-0147&rft.eissn=1537-5323&rft.coden=AMNTA4&rft_id=info:doi/10.1086/499438&rft_dat=%3Cjstor_proqu%3E10.1086/499438%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198647918&rft_id=info:pmid/16673349&rft_jstor_id=10.1086/499438&rfr_iscdi=true