Light and electron microscopic observations of fabrication, release, and fate of biphasic secretion granules produced by epididymal epithelial principal cells of the fan-throated lizard Sitana ponticeriana cuvier
The epididymis of the fan‐throated lizard Sitana ponticeriana was examined with light and transmission electron microscopy to understand the cellular mechanisms of fabrication of secretion granules in epithelial principal cells, granule release into the lumen, and the fate of the dense structured gr...
Gespeichert in:
Veröffentlicht in: | Journal of morphology (1931) 2006-06, Vol.267 (6), p.713-729 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The epididymis of the fan‐throated lizard Sitana ponticeriana was examined with light and transmission electron microscopy to understand the cellular mechanisms of fabrication of secretion granules in epithelial principal cells, granule release into the lumen, and the fate of the dense structured granules after reaching the lumen. Principal cells of the ductus epididymis, except at the cauda, secrete electron‐dense biphasic granules copiously, which decrease in abundance from the initial segment to corpus. The principal cell possesses a prominent Golgi apparatus and all versions of endoplasmic reticulum (ER), rough, smooth, and sparsely granulated. The material of the dense portion of the secretion granules, after processing at the Golgi apparatus, appears to accumulate in large ER cisternae in the supranuclear cytoplasm. It undergoes condensation when the cisternae become condensing vacuoles. Mitochondria appear to play a role in dense granule formation. The condensing vacuoles are displaced toward the apical cytoplasm when the material of the less dense portion is added to the condensing vacuoles at the Golgi area. Thus, the less dense and dense portions of the secretion granules are secreted and added to the condensing vacuoles separately. The composite granules are released into the lumen by exocytosis when the less dense portion merges with the luminal content, whereas the dense portion maintains its structured identity. The latter, initially measuring 1–2 μm in diameter, increases in size several times. It is inferred that these granules release their content gradually, resulting in the appearance of vacuoles, and suggesting that the granules have an insoluble matrix in which there is a sparingly soluble material. The substance leaching out of the granules appears to contribute to keeping the sperm quiescent and alive during storage in the male reproductive tract. J. Morphol. © 2006 Wiley‐Liss, Inc. |
---|---|
ISSN: | 0362-2525 1097-4687 |
DOI: | 10.1002/jmor.10434 |