Particle Tracking Using Confocal Microscopy to Probe the Microrheology in a Phase-Separating Emulsion Containing Nonadsorbing Polysaccharide
Brownian diffusion of fluorescent microspheres (0.21, 0.5, and 0.89 μm diameter) in conjunction with confocal microscopy has been used to monitor the microrheology of phase-separated regions in a protein-stabilized oil-in-water emulsion containing various low concentrations of a nonadsorbing polysac...
Gespeichert in:
Veröffentlicht in: | Langmuir 2006-05, Vol.22 (10), p.4710-4719 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4719 |
---|---|
container_issue | 10 |
container_start_page | 4710 |
container_title | Langmuir |
container_volume | 22 |
creator | Moschakis, Thomas Murray, Brent S Dickinson, Eric |
description | Brownian diffusion of fluorescent microspheres (0.21, 0.5, and 0.89 μm diameter) in conjunction with confocal microscopy has been used to monitor the microrheology of phase-separated regions in a protein-stabilized oil-in-water emulsion containing various low concentrations of a nonadsorbing polysaccharide, xanthan gum. The sensitivity and reliability of the technique has been demonstrated in test experiments on (i) aqueous glycerol solutions and (ii) concentrated surfactant-stabilized emulsions (30−60 vol % oil, 1−2 wt % Tween 20). From particle tracking measurements on the caseinate-stabilized emulsions (30 vol % oil, 1.4 wt % sodium caseinate, pH 7) containing xanthan (0.03−0.07 wt %), the apparent viscosity in the oil-droplet-rich regions has been estimated to be up to 103 times higher than that in the phase-separated xanthan-rich regions. This means that our previously determined shape relaxation times for xanthan-containing blobs in the same systems can be attributed to the dominant viscoelasticity of the surrounding regions of concentrated oil droplets and not to the rheology of the xanthan-rich blobs themselves. These data provide clear and unequivocal evidence for the dominant role of the interconnected depletion-flocculated network of oil droplets in the physicochemical mechanism by which hydrocolloid thickeners control the creaming instability of concentrated oil-in-water emulsions. |
doi_str_mv | 10.1021/la0533258 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67922411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67922411</sourcerecordid><originalsourceid>FETCH-LOGICAL-a447t-8cc7a98fa46a66e4db9e13252dce9c8c4d63efbbf3f8630d4f0c47cb4f82a0cb3</originalsourceid><addsrcrecordid>eNptkcFu1DAQhi1ERZfCgRdAvoDEIcWOHTs-0qXQSqUEdXu2Jo7ddZu1FzuR2HfgoUm0q-6Fiy3PfPo18xmhd5ScU1LSzz2QirGyql-gBa1KUlR1KV-iBZGcFZILdope5_xICFGMq1folArBlazFAv1tIA3e9BavEpgnHx7wfZ7PZQwuGujxD29SzCZud3iIuEmxtXhY2309rW3s48MO-4ABN2vItrizW0gwzCGXm7HPPoY5bQAf5tptDNDlmNr50cR-l8GYNSTf2TfoxEGf7dvDfYbuv12ullfFzc_v18svNwVwLoeiNkaCqh1wAUJY3rXK0mn9sjNWmdrwTjDr2tYxVwtGOu6I4dK03NUlENOyM_Rxn7tN8fdo86A3Phvb9xBsHLMWUpUlp3QCP-3BWUFO1ult8htIO02JntXrZ_UT-_4QOrYb2x3Jg-sJ-HAAIE9iXYJgfD5ycvopReXEFXvO58H-ee5DepoGY7LSq-ZOrxSvv_4St_rimAsm68c4pjC5-8-A_wBi0qmx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67922411</pqid></control><display><type>article</type><title>Particle Tracking Using Confocal Microscopy to Probe the Microrheology in a Phase-Separating Emulsion Containing Nonadsorbing Polysaccharide</title><source>MEDLINE</source><source>ACS Publications</source><creator>Moschakis, Thomas ; Murray, Brent S ; Dickinson, Eric</creator><creatorcontrib>Moschakis, Thomas ; Murray, Brent S ; Dickinson, Eric</creatorcontrib><description>Brownian diffusion of fluorescent microspheres (0.21, 0.5, and 0.89 μm diameter) in conjunction with confocal microscopy has been used to monitor the microrheology of phase-separated regions in a protein-stabilized oil-in-water emulsion containing various low concentrations of a nonadsorbing polysaccharide, xanthan gum. The sensitivity and reliability of the technique has been demonstrated in test experiments on (i) aqueous glycerol solutions and (ii) concentrated surfactant-stabilized emulsions (30−60 vol % oil, 1−2 wt % Tween 20). From particle tracking measurements on the caseinate-stabilized emulsions (30 vol % oil, 1.4 wt % sodium caseinate, pH 7) containing xanthan (0.03−0.07 wt %), the apparent viscosity in the oil-droplet-rich regions has been estimated to be up to 103 times higher than that in the phase-separated xanthan-rich regions. This means that our previously determined shape relaxation times for xanthan-containing blobs in the same systems can be attributed to the dominant viscoelasticity of the surrounding regions of concentrated oil droplets and not to the rheology of the xanthan-rich blobs themselves. These data provide clear and unequivocal evidence for the dominant role of the interconnected depletion-flocculated network of oil droplets in the physicochemical mechanism by which hydrocolloid thickeners control the creaming instability of concentrated oil-in-water emulsions.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la0533258</identifier><identifier>PMID: 16649786</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Chemistry ; Colloidal state and disperse state ; Emulsions ; Emulsions. Microemulsions. Foams ; Exact sciences and technology ; Fluorescence ; General and physical chemistry ; Microscopy, Confocal ; Microspheres ; Particle Size ; Phase Transition ; Polysaccharides, Bacterial - chemistry ; Rheology ; Surface Properties</subject><ispartof>Langmuir, 2006-05, Vol.22 (10), p.4710-4719</ispartof><rights>Copyright © 2006 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a447t-8cc7a98fa46a66e4db9e13252dce9c8c4d63efbbf3f8630d4f0c47cb4f82a0cb3</citedby><cites>FETCH-LOGICAL-a447t-8cc7a98fa46a66e4db9e13252dce9c8c4d63efbbf3f8630d4f0c47cb4f82a0cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la0533258$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la0533258$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17746917$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16649786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moschakis, Thomas</creatorcontrib><creatorcontrib>Murray, Brent S</creatorcontrib><creatorcontrib>Dickinson, Eric</creatorcontrib><title>Particle Tracking Using Confocal Microscopy to Probe the Microrheology in a Phase-Separating Emulsion Containing Nonadsorbing Polysaccharide</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Brownian diffusion of fluorescent microspheres (0.21, 0.5, and 0.89 μm diameter) in conjunction with confocal microscopy has been used to monitor the microrheology of phase-separated regions in a protein-stabilized oil-in-water emulsion containing various low concentrations of a nonadsorbing polysaccharide, xanthan gum. The sensitivity and reliability of the technique has been demonstrated in test experiments on (i) aqueous glycerol solutions and (ii) concentrated surfactant-stabilized emulsions (30−60 vol % oil, 1−2 wt % Tween 20). From particle tracking measurements on the caseinate-stabilized emulsions (30 vol % oil, 1.4 wt % sodium caseinate, pH 7) containing xanthan (0.03−0.07 wt %), the apparent viscosity in the oil-droplet-rich regions has been estimated to be up to 103 times higher than that in the phase-separated xanthan-rich regions. This means that our previously determined shape relaxation times for xanthan-containing blobs in the same systems can be attributed to the dominant viscoelasticity of the surrounding regions of concentrated oil droplets and not to the rheology of the xanthan-rich blobs themselves. These data provide clear and unequivocal evidence for the dominant role of the interconnected depletion-flocculated network of oil droplets in the physicochemical mechanism by which hydrocolloid thickeners control the creaming instability of concentrated oil-in-water emulsions.</description><subject>Adsorption</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Emulsions</subject><subject>Emulsions. Microemulsions. Foams</subject><subject>Exact sciences and technology</subject><subject>Fluorescence</subject><subject>General and physical chemistry</subject><subject>Microscopy, Confocal</subject><subject>Microspheres</subject><subject>Particle Size</subject><subject>Phase Transition</subject><subject>Polysaccharides, Bacterial - chemistry</subject><subject>Rheology</subject><subject>Surface Properties</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkcFu1DAQhi1ERZfCgRdAvoDEIcWOHTs-0qXQSqUEdXu2Jo7ddZu1FzuR2HfgoUm0q-6Fiy3PfPo18xmhd5ScU1LSzz2QirGyql-gBa1KUlR1KV-iBZGcFZILdope5_xICFGMq1folArBlazFAv1tIA3e9BavEpgnHx7wfZ7PZQwuGujxD29SzCZud3iIuEmxtXhY2309rW3s48MO-4ABN2vItrizW0gwzCGXm7HPPoY5bQAf5tptDNDlmNr50cR-l8GYNSTf2TfoxEGf7dvDfYbuv12ullfFzc_v18svNwVwLoeiNkaCqh1wAUJY3rXK0mn9sjNWmdrwTjDr2tYxVwtGOu6I4dK03NUlENOyM_Rxn7tN8fdo86A3Phvb9xBsHLMWUpUlp3QCP-3BWUFO1ult8htIO02JntXrZ_UT-_4QOrYb2x3Jg-sJ-HAAIE9iXYJgfD5ycvopReXEFXvO58H-ee5DepoGY7LSq-ZOrxSvv_4St_rimAsm68c4pjC5-8-A_wBi0qmx</recordid><startdate>20060509</startdate><enddate>20060509</enddate><creator>Moschakis, Thomas</creator><creator>Murray, Brent S</creator><creator>Dickinson, Eric</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060509</creationdate><title>Particle Tracking Using Confocal Microscopy to Probe the Microrheology in a Phase-Separating Emulsion Containing Nonadsorbing Polysaccharide</title><author>Moschakis, Thomas ; Murray, Brent S ; Dickinson, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a447t-8cc7a98fa46a66e4db9e13252dce9c8c4d63efbbf3f8630d4f0c47cb4f82a0cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adsorption</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Emulsions</topic><topic>Emulsions. Microemulsions. Foams</topic><topic>Exact sciences and technology</topic><topic>Fluorescence</topic><topic>General and physical chemistry</topic><topic>Microscopy, Confocal</topic><topic>Microspheres</topic><topic>Particle Size</topic><topic>Phase Transition</topic><topic>Polysaccharides, Bacterial - chemistry</topic><topic>Rheology</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moschakis, Thomas</creatorcontrib><creatorcontrib>Murray, Brent S</creatorcontrib><creatorcontrib>Dickinson, Eric</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moschakis, Thomas</au><au>Murray, Brent S</au><au>Dickinson, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle Tracking Using Confocal Microscopy to Probe the Microrheology in a Phase-Separating Emulsion Containing Nonadsorbing Polysaccharide</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2006-05-09</date><risdate>2006</risdate><volume>22</volume><issue>10</issue><spage>4710</spage><epage>4719</epage><pages>4710-4719</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Brownian diffusion of fluorescent microspheres (0.21, 0.5, and 0.89 μm diameter) in conjunction with confocal microscopy has been used to monitor the microrheology of phase-separated regions in a protein-stabilized oil-in-water emulsion containing various low concentrations of a nonadsorbing polysaccharide, xanthan gum. The sensitivity and reliability of the technique has been demonstrated in test experiments on (i) aqueous glycerol solutions and (ii) concentrated surfactant-stabilized emulsions (30−60 vol % oil, 1−2 wt % Tween 20). From particle tracking measurements on the caseinate-stabilized emulsions (30 vol % oil, 1.4 wt % sodium caseinate, pH 7) containing xanthan (0.03−0.07 wt %), the apparent viscosity in the oil-droplet-rich regions has been estimated to be up to 103 times higher than that in the phase-separated xanthan-rich regions. This means that our previously determined shape relaxation times for xanthan-containing blobs in the same systems can be attributed to the dominant viscoelasticity of the surrounding regions of concentrated oil droplets and not to the rheology of the xanthan-rich blobs themselves. These data provide clear and unequivocal evidence for the dominant role of the interconnected depletion-flocculated network of oil droplets in the physicochemical mechanism by which hydrocolloid thickeners control the creaming instability of concentrated oil-in-water emulsions.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16649786</pmid><doi>10.1021/la0533258</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2006-05, Vol.22 (10), p.4710-4719 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_67922411 |
source | MEDLINE; ACS Publications |
subjects | Adsorption Chemistry Colloidal state and disperse state Emulsions Emulsions. Microemulsions. Foams Exact sciences and technology Fluorescence General and physical chemistry Microscopy, Confocal Microspheres Particle Size Phase Transition Polysaccharides, Bacterial - chemistry Rheology Surface Properties |
title | Particle Tracking Using Confocal Microscopy to Probe the Microrheology in a Phase-Separating Emulsion Containing Nonadsorbing Polysaccharide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20Tracking%20Using%20Confocal%20Microscopy%20to%20Probe%20the%20Microrheology%20in%20a%20Phase-Separating%20Emulsion%20Containing%20Nonadsorbing%20Polysaccharide&rft.jtitle=Langmuir&rft.au=Moschakis,%20Thomas&rft.date=2006-05-09&rft.volume=22&rft.issue=10&rft.spage=4710&rft.epage=4719&rft.pages=4710-4719&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la0533258&rft_dat=%3Cproquest_cross%3E67922411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67922411&rft_id=info:pmid/16649786&rfr_iscdi=true |