Particle Tracking Using Confocal Microscopy to Probe the Microrheology in a Phase-Separating Emulsion Containing Nonadsorbing Polysaccharide

Brownian diffusion of fluorescent microspheres (0.21, 0.5, and 0.89 μm diameter) in conjunction with confocal microscopy has been used to monitor the microrheology of phase-separated regions in a protein-stabilized oil-in-water emulsion containing various low concentrations of a nonadsorbing polysac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2006-05, Vol.22 (10), p.4710-4719
Hauptverfasser: Moschakis, Thomas, Murray, Brent S, Dickinson, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4719
container_issue 10
container_start_page 4710
container_title Langmuir
container_volume 22
creator Moschakis, Thomas
Murray, Brent S
Dickinson, Eric
description Brownian diffusion of fluorescent microspheres (0.21, 0.5, and 0.89 μm diameter) in conjunction with confocal microscopy has been used to monitor the microrheology of phase-separated regions in a protein-stabilized oil-in-water emulsion containing various low concentrations of a nonadsorbing polysaccharide, xanthan gum. The sensitivity and reliability of the technique has been demonstrated in test experiments on (i) aqueous glycerol solutions and (ii) concentrated surfactant-stabilized emulsions (30−60 vol % oil, 1−2 wt % Tween 20). From particle tracking measurements on the caseinate-stabilized emulsions (30 vol % oil, 1.4 wt % sodium caseinate, pH 7) containing xanthan (0.03−0.07 wt %), the apparent viscosity in the oil-droplet-rich regions has been estimated to be up to 103 times higher than that in the phase-separated xanthan-rich regions. This means that our previously determined shape relaxation times for xanthan-containing blobs in the same systems can be attributed to the dominant viscoelasticity of the surrounding regions of concentrated oil droplets and not to the rheology of the xanthan-rich blobs themselves. These data provide clear and unequivocal evidence for the dominant role of the interconnected depletion-flocculated network of oil droplets in the physicochemical mechanism by which hydrocolloid thickeners control the creaming instability of concentrated oil-in-water emulsions.
doi_str_mv 10.1021/la0533258
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67922411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67922411</sourcerecordid><originalsourceid>FETCH-LOGICAL-a447t-8cc7a98fa46a66e4db9e13252dce9c8c4d63efbbf3f8630d4f0c47cb4f82a0cb3</originalsourceid><addsrcrecordid>eNptkcFu1DAQhi1ERZfCgRdAvoDEIcWOHTs-0qXQSqUEdXu2Jo7ddZu1FzuR2HfgoUm0q-6Fiy3PfPo18xmhd5ScU1LSzz2QirGyql-gBa1KUlR1KV-iBZGcFZILdope5_xICFGMq1folArBlazFAv1tIA3e9BavEpgnHx7wfZ7PZQwuGujxD29SzCZud3iIuEmxtXhY2309rW3s48MO-4ABN2vItrizW0gwzCGXm7HPPoY5bQAf5tptDNDlmNr50cR-l8GYNSTf2TfoxEGf7dvDfYbuv12ullfFzc_v18svNwVwLoeiNkaCqh1wAUJY3rXK0mn9sjNWmdrwTjDr2tYxVwtGOu6I4dK03NUlENOyM_Rxn7tN8fdo86A3Phvb9xBsHLMWUpUlp3QCP-3BWUFO1ult8htIO02JntXrZ_UT-_4QOrYb2x3Jg-sJ-HAAIE9iXYJgfD5ycvopReXEFXvO58H-ee5DepoGY7LSq-ZOrxSvv_4St_rimAsm68c4pjC5-8-A_wBi0qmx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67922411</pqid></control><display><type>article</type><title>Particle Tracking Using Confocal Microscopy to Probe the Microrheology in a Phase-Separating Emulsion Containing Nonadsorbing Polysaccharide</title><source>MEDLINE</source><source>ACS Publications</source><creator>Moschakis, Thomas ; Murray, Brent S ; Dickinson, Eric</creator><creatorcontrib>Moschakis, Thomas ; Murray, Brent S ; Dickinson, Eric</creatorcontrib><description>Brownian diffusion of fluorescent microspheres (0.21, 0.5, and 0.89 μm diameter) in conjunction with confocal microscopy has been used to monitor the microrheology of phase-separated regions in a protein-stabilized oil-in-water emulsion containing various low concentrations of a nonadsorbing polysaccharide, xanthan gum. The sensitivity and reliability of the technique has been demonstrated in test experiments on (i) aqueous glycerol solutions and (ii) concentrated surfactant-stabilized emulsions (30−60 vol % oil, 1−2 wt % Tween 20). From particle tracking measurements on the caseinate-stabilized emulsions (30 vol % oil, 1.4 wt % sodium caseinate, pH 7) containing xanthan (0.03−0.07 wt %), the apparent viscosity in the oil-droplet-rich regions has been estimated to be up to 103 times higher than that in the phase-separated xanthan-rich regions. This means that our previously determined shape relaxation times for xanthan-containing blobs in the same systems can be attributed to the dominant viscoelasticity of the surrounding regions of concentrated oil droplets and not to the rheology of the xanthan-rich blobs themselves. These data provide clear and unequivocal evidence for the dominant role of the interconnected depletion-flocculated network of oil droplets in the physicochemical mechanism by which hydrocolloid thickeners control the creaming instability of concentrated oil-in-water emulsions.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la0533258</identifier><identifier>PMID: 16649786</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Chemistry ; Colloidal state and disperse state ; Emulsions ; Emulsions. Microemulsions. Foams ; Exact sciences and technology ; Fluorescence ; General and physical chemistry ; Microscopy, Confocal ; Microspheres ; Particle Size ; Phase Transition ; Polysaccharides, Bacterial - chemistry ; Rheology ; Surface Properties</subject><ispartof>Langmuir, 2006-05, Vol.22 (10), p.4710-4719</ispartof><rights>Copyright © 2006 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a447t-8cc7a98fa46a66e4db9e13252dce9c8c4d63efbbf3f8630d4f0c47cb4f82a0cb3</citedby><cites>FETCH-LOGICAL-a447t-8cc7a98fa46a66e4db9e13252dce9c8c4d63efbbf3f8630d4f0c47cb4f82a0cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la0533258$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la0533258$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17746917$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16649786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moschakis, Thomas</creatorcontrib><creatorcontrib>Murray, Brent S</creatorcontrib><creatorcontrib>Dickinson, Eric</creatorcontrib><title>Particle Tracking Using Confocal Microscopy to Probe the Microrheology in a Phase-Separating Emulsion Containing Nonadsorbing Polysaccharide</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Brownian diffusion of fluorescent microspheres (0.21, 0.5, and 0.89 μm diameter) in conjunction with confocal microscopy has been used to monitor the microrheology of phase-separated regions in a protein-stabilized oil-in-water emulsion containing various low concentrations of a nonadsorbing polysaccharide, xanthan gum. The sensitivity and reliability of the technique has been demonstrated in test experiments on (i) aqueous glycerol solutions and (ii) concentrated surfactant-stabilized emulsions (30−60 vol % oil, 1−2 wt % Tween 20). From particle tracking measurements on the caseinate-stabilized emulsions (30 vol % oil, 1.4 wt % sodium caseinate, pH 7) containing xanthan (0.03−0.07 wt %), the apparent viscosity in the oil-droplet-rich regions has been estimated to be up to 103 times higher than that in the phase-separated xanthan-rich regions. This means that our previously determined shape relaxation times for xanthan-containing blobs in the same systems can be attributed to the dominant viscoelasticity of the surrounding regions of concentrated oil droplets and not to the rheology of the xanthan-rich blobs themselves. These data provide clear and unequivocal evidence for the dominant role of the interconnected depletion-flocculated network of oil droplets in the physicochemical mechanism by which hydrocolloid thickeners control the creaming instability of concentrated oil-in-water emulsions.</description><subject>Adsorption</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Emulsions</subject><subject>Emulsions. Microemulsions. Foams</subject><subject>Exact sciences and technology</subject><subject>Fluorescence</subject><subject>General and physical chemistry</subject><subject>Microscopy, Confocal</subject><subject>Microspheres</subject><subject>Particle Size</subject><subject>Phase Transition</subject><subject>Polysaccharides, Bacterial - chemistry</subject><subject>Rheology</subject><subject>Surface Properties</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkcFu1DAQhi1ERZfCgRdAvoDEIcWOHTs-0qXQSqUEdXu2Jo7ddZu1FzuR2HfgoUm0q-6Fiy3PfPo18xmhd5ScU1LSzz2QirGyql-gBa1KUlR1KV-iBZGcFZILdope5_xICFGMq1folArBlazFAv1tIA3e9BavEpgnHx7wfZ7PZQwuGujxD29SzCZud3iIuEmxtXhY2309rW3s48MO-4ABN2vItrizW0gwzCGXm7HPPoY5bQAf5tptDNDlmNr50cR-l8GYNSTf2TfoxEGf7dvDfYbuv12ullfFzc_v18svNwVwLoeiNkaCqh1wAUJY3rXK0mn9sjNWmdrwTjDr2tYxVwtGOu6I4dK03NUlENOyM_Rxn7tN8fdo86A3Phvb9xBsHLMWUpUlp3QCP-3BWUFO1ult8htIO02JntXrZ_UT-_4QOrYb2x3Jg-sJ-HAAIE9iXYJgfD5ycvopReXEFXvO58H-ee5DepoGY7LSq-ZOrxSvv_4St_rimAsm68c4pjC5-8-A_wBi0qmx</recordid><startdate>20060509</startdate><enddate>20060509</enddate><creator>Moschakis, Thomas</creator><creator>Murray, Brent S</creator><creator>Dickinson, Eric</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060509</creationdate><title>Particle Tracking Using Confocal Microscopy to Probe the Microrheology in a Phase-Separating Emulsion Containing Nonadsorbing Polysaccharide</title><author>Moschakis, Thomas ; Murray, Brent S ; Dickinson, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a447t-8cc7a98fa46a66e4db9e13252dce9c8c4d63efbbf3f8630d4f0c47cb4f82a0cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adsorption</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Emulsions</topic><topic>Emulsions. Microemulsions. Foams</topic><topic>Exact sciences and technology</topic><topic>Fluorescence</topic><topic>General and physical chemistry</topic><topic>Microscopy, Confocal</topic><topic>Microspheres</topic><topic>Particle Size</topic><topic>Phase Transition</topic><topic>Polysaccharides, Bacterial - chemistry</topic><topic>Rheology</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moschakis, Thomas</creatorcontrib><creatorcontrib>Murray, Brent S</creatorcontrib><creatorcontrib>Dickinson, Eric</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moschakis, Thomas</au><au>Murray, Brent S</au><au>Dickinson, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle Tracking Using Confocal Microscopy to Probe the Microrheology in a Phase-Separating Emulsion Containing Nonadsorbing Polysaccharide</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2006-05-09</date><risdate>2006</risdate><volume>22</volume><issue>10</issue><spage>4710</spage><epage>4719</epage><pages>4710-4719</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Brownian diffusion of fluorescent microspheres (0.21, 0.5, and 0.89 μm diameter) in conjunction with confocal microscopy has been used to monitor the microrheology of phase-separated regions in a protein-stabilized oil-in-water emulsion containing various low concentrations of a nonadsorbing polysaccharide, xanthan gum. The sensitivity and reliability of the technique has been demonstrated in test experiments on (i) aqueous glycerol solutions and (ii) concentrated surfactant-stabilized emulsions (30−60 vol % oil, 1−2 wt % Tween 20). From particle tracking measurements on the caseinate-stabilized emulsions (30 vol % oil, 1.4 wt % sodium caseinate, pH 7) containing xanthan (0.03−0.07 wt %), the apparent viscosity in the oil-droplet-rich regions has been estimated to be up to 103 times higher than that in the phase-separated xanthan-rich regions. This means that our previously determined shape relaxation times for xanthan-containing blobs in the same systems can be attributed to the dominant viscoelasticity of the surrounding regions of concentrated oil droplets and not to the rheology of the xanthan-rich blobs themselves. These data provide clear and unequivocal evidence for the dominant role of the interconnected depletion-flocculated network of oil droplets in the physicochemical mechanism by which hydrocolloid thickeners control the creaming instability of concentrated oil-in-water emulsions.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16649786</pmid><doi>10.1021/la0533258</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2006-05, Vol.22 (10), p.4710-4719
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_67922411
source MEDLINE; ACS Publications
subjects Adsorption
Chemistry
Colloidal state and disperse state
Emulsions
Emulsions. Microemulsions. Foams
Exact sciences and technology
Fluorescence
General and physical chemistry
Microscopy, Confocal
Microspheres
Particle Size
Phase Transition
Polysaccharides, Bacterial - chemistry
Rheology
Surface Properties
title Particle Tracking Using Confocal Microscopy to Probe the Microrheology in a Phase-Separating Emulsion Containing Nonadsorbing Polysaccharide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20Tracking%20Using%20Confocal%20Microscopy%20to%20Probe%20the%20Microrheology%20in%20a%20Phase-Separating%20Emulsion%20Containing%20Nonadsorbing%20Polysaccharide&rft.jtitle=Langmuir&rft.au=Moschakis,%20Thomas&rft.date=2006-05-09&rft.volume=22&rft.issue=10&rft.spage=4710&rft.epage=4719&rft.pages=4710-4719&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la0533258&rft_dat=%3Cproquest_cross%3E67922411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67922411&rft_id=info:pmid/16649786&rfr_iscdi=true