Mechanism of Thio Acid/Azide Amidation

A combined experimental and computational mechanistic study of amide formation from thio acids and azides is described. The data support two distinct mechanistic pathways dependent on the electronic character of the azide component. Relatively electron-rich azides undergo bimolecular coupling with t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2006-05, Vol.128 (17), p.5695-5702
Hauptverfasser: Kolakowski, Robert V, Shangguan, Ning, Sauers, Ronald R, Williams, Lawrence J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5702
container_issue 17
container_start_page 5695
container_title Journal of the American Chemical Society
container_volume 128
creator Kolakowski, Robert V
Shangguan, Ning
Sauers, Ronald R
Williams, Lawrence J
description A combined experimental and computational mechanistic study of amide formation from thio acids and azides is described. The data support two distinct mechanistic pathways dependent on the electronic character of the azide component. Relatively electron-rich azides undergo bimolecular coupling with thiocarboxylates via an anion-accelerated [3+2] cycloaddition to give a thiatriazoline. Highly electron-poor azides couple via bimolecular union of the terminal nitrogen of the azide with sulfur of the thiocarboxylate to give a linear adduct. Cyclization of this intermediate gives a thiatriazoline. Decomposition to amide is found to proceed via retro-[3+2] cycloaddition of the neutral thiatriazoline intermediates. Computational analysis (DFT, 6-31+G(d)) identified pathways by which both classes of azide undergo [3+2] cycloaddition with thio acid to give thiatriazoline intermediates, although these paths are higher in energy than the thiocarboxylate amidations. These studies also establish that the reaction profile of electron-poor azides is attributable to a prior capture mechanism followed by intramolecular acylation.
doi_str_mv 10.1021/ja057533y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67903896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67903896</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-171366dad3c5a7d7db202efce48b439bed0297fab1d2d787e1f96765173c228f3</originalsourceid><addsrcrecordid>eNpt0F1LwzAUBuAgipvTC_-A9MaBF3X5aJL2sg51wtSJ09uQJilm9mMmLTh_vZWV7carw-E8vBxeAM4RvEYQo8lKQsopIZsDMEQUw5AizA7BEEKIQx4zMgAn3q-6NcIxOgYDxBjhjLAhGD8a9SEr68ugzoPlh62DVFk9SX-sNkFaWi0bW1en4CiXhTdn_RyBt7vb5XQWzp_vH6bpPJQkRk2IOCKMaamJopJrrjMMscmVieIsIklmNMQJz2WGNNY85gblCeOMIk4UxnFORmC8zV27-qs1vhGl9coUhaxM3XrBeAJJnLAOXm2hcrX3zuRi7Wwp3UYgKP5KEbtSOnvRh7ZZafRe9i104LIH0itZ5E5Wyvq94zxCNCKdC7fO-sZ87-7SfXaPEU7FcvEqnhbwhaP3mbjZ50rlxapuXdV198-Dv8QSgiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67903896</pqid></control><display><type>article</type><title>Mechanism of Thio Acid/Azide Amidation</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Kolakowski, Robert V ; Shangguan, Ning ; Sauers, Ronald R ; Williams, Lawrence J</creator><creatorcontrib>Kolakowski, Robert V ; Shangguan, Ning ; Sauers, Ronald R ; Williams, Lawrence J</creatorcontrib><description>A combined experimental and computational mechanistic study of amide formation from thio acids and azides is described. The data support two distinct mechanistic pathways dependent on the electronic character of the azide component. Relatively electron-rich azides undergo bimolecular coupling with thiocarboxylates via an anion-accelerated [3+2] cycloaddition to give a thiatriazoline. Highly electron-poor azides couple via bimolecular union of the terminal nitrogen of the azide with sulfur of the thiocarboxylate to give a linear adduct. Cyclization of this intermediate gives a thiatriazoline. Decomposition to amide is found to proceed via retro-[3+2] cycloaddition of the neutral thiatriazoline intermediates. Computational analysis (DFT, 6-31+G(d)) identified pathways by which both classes of azide undergo [3+2] cycloaddition with thio acid to give thiatriazoline intermediates, although these paths are higher in energy than the thiocarboxylate amidations. These studies also establish that the reaction profile of electron-poor azides is attributable to a prior capture mechanism followed by intramolecular acylation.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja057533y</identifier><identifier>PMID: 16637636</identifier><identifier>CODEN: JACSAT</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Acids - chemistry ; Amides - chemistry ; Azides - chemistry ; Chemistry ; Cyclization ; Exact sciences and technology ; Kinetics and mechanisms ; Organic chemistry ; Reactivity and mechanisms</subject><ispartof>Journal of the American Chemical Society, 2006-05, Vol.128 (17), p.5695-5702</ispartof><rights>Copyright © 2006 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-171366dad3c5a7d7db202efce48b439bed0297fab1d2d787e1f96765173c228f3</citedby><cites>FETCH-LOGICAL-a381t-171366dad3c5a7d7db202efce48b439bed0297fab1d2d787e1f96765173c228f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja057533y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja057533y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17741543$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16637636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kolakowski, Robert V</creatorcontrib><creatorcontrib>Shangguan, Ning</creatorcontrib><creatorcontrib>Sauers, Ronald R</creatorcontrib><creatorcontrib>Williams, Lawrence J</creatorcontrib><title>Mechanism of Thio Acid/Azide Amidation</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>A combined experimental and computational mechanistic study of amide formation from thio acids and azides is described. The data support two distinct mechanistic pathways dependent on the electronic character of the azide component. Relatively electron-rich azides undergo bimolecular coupling with thiocarboxylates via an anion-accelerated [3+2] cycloaddition to give a thiatriazoline. Highly electron-poor azides couple via bimolecular union of the terminal nitrogen of the azide with sulfur of the thiocarboxylate to give a linear adduct. Cyclization of this intermediate gives a thiatriazoline. Decomposition to amide is found to proceed via retro-[3+2] cycloaddition of the neutral thiatriazoline intermediates. Computational analysis (DFT, 6-31+G(d)) identified pathways by which both classes of azide undergo [3+2] cycloaddition with thio acid to give thiatriazoline intermediates, although these paths are higher in energy than the thiocarboxylate amidations. These studies also establish that the reaction profile of electron-poor azides is attributable to a prior capture mechanism followed by intramolecular acylation.</description><subject>Acids - chemistry</subject><subject>Amides - chemistry</subject><subject>Azides - chemistry</subject><subject>Chemistry</subject><subject>Cyclization</subject><subject>Exact sciences and technology</subject><subject>Kinetics and mechanisms</subject><subject>Organic chemistry</subject><subject>Reactivity and mechanisms</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0F1LwzAUBuAgipvTC_-A9MaBF3X5aJL2sg51wtSJ09uQJilm9mMmLTh_vZWV7carw-E8vBxeAM4RvEYQo8lKQsopIZsDMEQUw5AizA7BEEKIQx4zMgAn3q-6NcIxOgYDxBjhjLAhGD8a9SEr68ugzoPlh62DVFk9SX-sNkFaWi0bW1en4CiXhTdn_RyBt7vb5XQWzp_vH6bpPJQkRk2IOCKMaamJopJrrjMMscmVieIsIklmNMQJz2WGNNY85gblCeOMIk4UxnFORmC8zV27-qs1vhGl9coUhaxM3XrBeAJJnLAOXm2hcrX3zuRi7Wwp3UYgKP5KEbtSOnvRh7ZZafRe9i104LIH0itZ5E5Wyvq94zxCNCKdC7fO-sZ87-7SfXaPEU7FcvEqnhbwhaP3mbjZ50rlxapuXdV198-Dv8QSgiE</recordid><startdate>20060503</startdate><enddate>20060503</enddate><creator>Kolakowski, Robert V</creator><creator>Shangguan, Ning</creator><creator>Sauers, Ronald R</creator><creator>Williams, Lawrence J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060503</creationdate><title>Mechanism of Thio Acid/Azide Amidation</title><author>Kolakowski, Robert V ; Shangguan, Ning ; Sauers, Ronald R ; Williams, Lawrence J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-171366dad3c5a7d7db202efce48b439bed0297fab1d2d787e1f96765173c228f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acids - chemistry</topic><topic>Amides - chemistry</topic><topic>Azides - chemistry</topic><topic>Chemistry</topic><topic>Cyclization</topic><topic>Exact sciences and technology</topic><topic>Kinetics and mechanisms</topic><topic>Organic chemistry</topic><topic>Reactivity and mechanisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolakowski, Robert V</creatorcontrib><creatorcontrib>Shangguan, Ning</creatorcontrib><creatorcontrib>Sauers, Ronald R</creatorcontrib><creatorcontrib>Williams, Lawrence J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolakowski, Robert V</au><au>Shangguan, Ning</au><au>Sauers, Ronald R</au><au>Williams, Lawrence J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Thio Acid/Azide Amidation</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2006-05-03</date><risdate>2006</risdate><volume>128</volume><issue>17</issue><spage>5695</spage><epage>5702</epage><pages>5695-5702</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><coden>JACSAT</coden><abstract>A combined experimental and computational mechanistic study of amide formation from thio acids and azides is described. The data support two distinct mechanistic pathways dependent on the electronic character of the azide component. Relatively electron-rich azides undergo bimolecular coupling with thiocarboxylates via an anion-accelerated [3+2] cycloaddition to give a thiatriazoline. Highly electron-poor azides couple via bimolecular union of the terminal nitrogen of the azide with sulfur of the thiocarboxylate to give a linear adduct. Cyclization of this intermediate gives a thiatriazoline. Decomposition to amide is found to proceed via retro-[3+2] cycloaddition of the neutral thiatriazoline intermediates. Computational analysis (DFT, 6-31+G(d)) identified pathways by which both classes of azide undergo [3+2] cycloaddition with thio acid to give thiatriazoline intermediates, although these paths are higher in energy than the thiocarboxylate amidations. These studies also establish that the reaction profile of electron-poor azides is attributable to a prior capture mechanism followed by intramolecular acylation.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16637636</pmid><doi>10.1021/ja057533y</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2006-05, Vol.128 (17), p.5695-5702
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_67903896
source MEDLINE; American Chemical Society Journals
subjects Acids - chemistry
Amides - chemistry
Azides - chemistry
Chemistry
Cyclization
Exact sciences and technology
Kinetics and mechanisms
Organic chemistry
Reactivity and mechanisms
title Mechanism of Thio Acid/Azide Amidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Thio%20Acid/Azide%20Amidation&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Kolakowski,%20Robert%20V&rft.date=2006-05-03&rft.volume=128&rft.issue=17&rft.spage=5695&rft.epage=5702&rft.pages=5695-5702&rft.issn=0002-7863&rft.eissn=1520-5126&rft.coden=JACSAT&rft_id=info:doi/10.1021/ja057533y&rft_dat=%3Cproquest_cross%3E67903896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67903896&rft_id=info:pmid/16637636&rfr_iscdi=true