Temperature, hematocrit, pH, and glucose 4-way ANOVA of cytochrome C oxidase redox status during systemic cold circulatory arrest in swine
Various investigators using near infrared spectroscopy (NIRS) have reported differing patterns of cytochrome C oxidase (cytochrome a,a3) redox status in similar brain oxygenation studies. We investigated whether distinctive differences could be due to combinations of variations in temperature, hemat...
Gespeichert in:
Veröffentlicht in: | Metabolic brain disease 2005-06, Vol.20 (2), p.105-113 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113 |
---|---|
container_issue | 2 |
container_start_page | 105 |
container_title | Metabolic brain disease |
container_volume | 20 |
creator | GAGNON, Roy E GAGNON, Faith A MACNAB, Andrew J LEBLANC, Jacques G |
description | Various investigators using near infrared spectroscopy (NIRS) have reported differing patterns of cytochrome C oxidase (cytochrome a,a3) redox status in similar brain oxygenation studies. We investigated whether distinctive differences could be due to combinations of variations in temperature, hematocrit, pH, and glucose.
Thirty-six healthy 10 kg commercial juvenile swine on cardiopulmonary bypass underwent 2-8 sequential periods of circulatory arrest. Prior to each arrest, key physiological variables were adjusted to match a random selection of one of 81 combinations of high, normal, or low levels of hypothermia, hematocrit, pH, and serum glucose. In the course of the study, the combinations were repeated twice to yield 162 NIRS data sets.
The mean rate of change in net oxidized minus reduced cytochrome a,a3 redox status in the brain following 7.5 min of ischemia was 0.49 +/- 0.26 micromol L(-1) min(-1), and, the corresponding mean magnitude of change was -1.23 +/- 0.57 micromol L(-1). The rate of change was influenced by temperature but not by hematocrit, pH, or glucose, either singly or in combination.
The respiratory response in mitochondria during systemic circulatory arrest is significantly influenced by temperature. |
doi_str_mv | 10.1007/s11011-005-4148-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67899504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>845683791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-3d5b673206408b368dd6358872d04ee7ed163637e4451d59b0911de8b4b8dc003</originalsourceid><addsrcrecordid>eNqFkc1u1DAURi0EotPCA7BBFhKsJmDH_8vRCFqkim4KW8ux77SukniwE7V5BZ4aj2akSmxY3c25n6-_g9A7Sj5TQtSXQimhtCFENJxy3fAXaEWFYo1iUrxEK6K1aBQ35Aydl_JACGGCmtfojArDNG3NCv25hWEP2U1zhjW-h8FNyec4rfH-ao3dGPBdP_tUAPPm0S148-Pm1wanHfZLBe9zGgBvcXqKwVUmQ0hPuEw1ruAw5zje4bKUCYbosU99wD5mP_f1kbxglzOUCccRl8c4whv0auf6Am9P8wL9_Pb1dnvVXN9cft9urhvPmJkaFkQnFWuJ5ER3TOoQJBNaqzYQDqAgUMkkU8C5oEGYjhhKA-iOdzr4WsEF-nTM3ef0e64X2CEWD33vRkhzsVJpYwTh_wWp4kIyekj88A_4kOY81k_YtqUt4bXqCtEj5HMqJcPO7nMcXF4sJfag0x512qrTHnTawwXvT8FzN0B43jj5q8DHE-CKd_0uu9HH8sxJLWtThv0FiaGnIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221204129</pqid></control><display><type>article</type><title>Temperature, hematocrit, pH, and glucose 4-way ANOVA of cytochrome C oxidase redox status during systemic cold circulatory arrest in swine</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>GAGNON, Roy E ; GAGNON, Faith A ; MACNAB, Andrew J ; LEBLANC, Jacques G</creator><creatorcontrib>GAGNON, Roy E ; GAGNON, Faith A ; MACNAB, Andrew J ; LEBLANC, Jacques G</creatorcontrib><description>Various investigators using near infrared spectroscopy (NIRS) have reported differing patterns of cytochrome C oxidase (cytochrome a,a3) redox status in similar brain oxygenation studies. We investigated whether distinctive differences could be due to combinations of variations in temperature, hematocrit, pH, and glucose.
Thirty-six healthy 10 kg commercial juvenile swine on cardiopulmonary bypass underwent 2-8 sequential periods of circulatory arrest. Prior to each arrest, key physiological variables were adjusted to match a random selection of one of 81 combinations of high, normal, or low levels of hypothermia, hematocrit, pH, and serum glucose. In the course of the study, the combinations were repeated twice to yield 162 NIRS data sets.
The mean rate of change in net oxidized minus reduced cytochrome a,a3 redox status in the brain following 7.5 min of ischemia was 0.49 +/- 0.26 micromol L(-1) min(-1), and, the corresponding mean magnitude of change was -1.23 +/- 0.57 micromol L(-1). The rate of change was influenced by temperature but not by hematocrit, pH, or glucose, either singly or in combination.
The respiratory response in mitochondria during systemic circulatory arrest is significantly influenced by temperature.</description><identifier>ISSN: 0885-7490</identifier><identifier>EISSN: 1573-7365</identifier><identifier>DOI: 10.1007/s11011-005-4148-4</identifier><identifier>PMID: 15938129</identifier><identifier>CODEN: MBDIEE</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Animals ; Bacterial diseases ; Bacterial diseases of the nervous system. Bacterial myositis ; Biological and medical sciences ; Blood Glucose - physiology ; Cardiopulmonary Bypass ; Cell Respiration - physiology ; Cerebrovascular Circulation - physiology ; Electron Transport Complex IV - metabolism ; Emergency and intensive cardiocirculatory care. Cardiogenic shock. Coronary intensive care ; Energy Metabolism - physiology ; Heart Arrest, Induced ; Hematocrit ; Human bacterial diseases ; Hydrogen-Ion Concentration ; Hypothermia, Induced ; Hypoxia-Ischemia, Brain - metabolism ; Hypoxia-Ischemia, Brain - physiopathology ; Infectious diseases ; Intensive care medicine ; Medical sciences ; Mitochondria - metabolism ; Neurology ; Oxidation-Reduction ; Spectroscopy, Near-Infrared ; Sus scrofa ; Temperature</subject><ispartof>Metabolic brain disease, 2005-06, Vol.20 (2), p.105-113</ispartof><rights>2005 INIST-CNRS</rights><rights>Springer Science + Business Media, Inc. 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c339t-3d5b673206408b368dd6358872d04ee7ed163637e4451d59b0911de8b4b8dc003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16863209$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15938129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>GAGNON, Roy E</creatorcontrib><creatorcontrib>GAGNON, Faith A</creatorcontrib><creatorcontrib>MACNAB, Andrew J</creatorcontrib><creatorcontrib>LEBLANC, Jacques G</creatorcontrib><title>Temperature, hematocrit, pH, and glucose 4-way ANOVA of cytochrome C oxidase redox status during systemic cold circulatory arrest in swine</title><title>Metabolic brain disease</title><addtitle>Metab Brain Dis</addtitle><description>Various investigators using near infrared spectroscopy (NIRS) have reported differing patterns of cytochrome C oxidase (cytochrome a,a3) redox status in similar brain oxygenation studies. We investigated whether distinctive differences could be due to combinations of variations in temperature, hematocrit, pH, and glucose.
Thirty-six healthy 10 kg commercial juvenile swine on cardiopulmonary bypass underwent 2-8 sequential periods of circulatory arrest. Prior to each arrest, key physiological variables were adjusted to match a random selection of one of 81 combinations of high, normal, or low levels of hypothermia, hematocrit, pH, and serum glucose. In the course of the study, the combinations were repeated twice to yield 162 NIRS data sets.
The mean rate of change in net oxidized minus reduced cytochrome a,a3 redox status in the brain following 7.5 min of ischemia was 0.49 +/- 0.26 micromol L(-1) min(-1), and, the corresponding mean magnitude of change was -1.23 +/- 0.57 micromol L(-1). The rate of change was influenced by temperature but not by hematocrit, pH, or glucose, either singly or in combination.
The respiratory response in mitochondria during systemic circulatory arrest is significantly influenced by temperature.</description><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Animals</subject><subject>Bacterial diseases</subject><subject>Bacterial diseases of the nervous system. Bacterial myositis</subject><subject>Biological and medical sciences</subject><subject>Blood Glucose - physiology</subject><subject>Cardiopulmonary Bypass</subject><subject>Cell Respiration - physiology</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Electron Transport Complex IV - metabolism</subject><subject>Emergency and intensive cardiocirculatory care. Cardiogenic shock. Coronary intensive care</subject><subject>Energy Metabolism - physiology</subject><subject>Heart Arrest, Induced</subject><subject>Hematocrit</subject><subject>Human bacterial diseases</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hypothermia, Induced</subject><subject>Hypoxia-Ischemia, Brain - metabolism</subject><subject>Hypoxia-Ischemia, Brain - physiopathology</subject><subject>Infectious diseases</subject><subject>Intensive care medicine</subject><subject>Medical sciences</subject><subject>Mitochondria - metabolism</subject><subject>Neurology</subject><subject>Oxidation-Reduction</subject><subject>Spectroscopy, Near-Infrared</subject><subject>Sus scrofa</subject><subject>Temperature</subject><issn>0885-7490</issn><issn>1573-7365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkc1u1DAURi0EotPCA7BBFhKsJmDH_8vRCFqkim4KW8ux77SukniwE7V5BZ4aj2akSmxY3c25n6-_g9A7Sj5TQtSXQimhtCFENJxy3fAXaEWFYo1iUrxEK6K1aBQ35Aydl_JACGGCmtfojArDNG3NCv25hWEP2U1zhjW-h8FNyec4rfH-ao3dGPBdP_tUAPPm0S148-Pm1wanHfZLBe9zGgBvcXqKwVUmQ0hPuEw1ruAw5zje4bKUCYbosU99wD5mP_f1kbxglzOUCccRl8c4whv0auf6Am9P8wL9_Pb1dnvVXN9cft9urhvPmJkaFkQnFWuJ5ER3TOoQJBNaqzYQDqAgUMkkU8C5oEGYjhhKA-iOdzr4WsEF-nTM3ef0e64X2CEWD33vRkhzsVJpYwTh_wWp4kIyekj88A_4kOY81k_YtqUt4bXqCtEj5HMqJcPO7nMcXF4sJfag0x512qrTHnTawwXvT8FzN0B43jj5q8DHE-CKd_0uu9HH8sxJLWtThv0FiaGnIg</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>GAGNON, Roy E</creator><creator>GAGNON, Faith A</creator><creator>MACNAB, Andrew J</creator><creator>LEBLANC, Jacques G</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20050601</creationdate><title>Temperature, hematocrit, pH, and glucose 4-way ANOVA of cytochrome C oxidase redox status during systemic cold circulatory arrest in swine</title><author>GAGNON, Roy E ; GAGNON, Faith A ; MACNAB, Andrew J ; LEBLANC, Jacques G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-3d5b673206408b368dd6358872d04ee7ed163637e4451d59b0911de8b4b8dc003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Animals</topic><topic>Bacterial diseases</topic><topic>Bacterial diseases of the nervous system. Bacterial myositis</topic><topic>Biological and medical sciences</topic><topic>Blood Glucose - physiology</topic><topic>Cardiopulmonary Bypass</topic><topic>Cell Respiration - physiology</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Electron Transport Complex IV - metabolism</topic><topic>Emergency and intensive cardiocirculatory care. Cardiogenic shock. Coronary intensive care</topic><topic>Energy Metabolism - physiology</topic><topic>Heart Arrest, Induced</topic><topic>Hematocrit</topic><topic>Human bacterial diseases</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hypothermia, Induced</topic><topic>Hypoxia-Ischemia, Brain - metabolism</topic><topic>Hypoxia-Ischemia, Brain - physiopathology</topic><topic>Infectious diseases</topic><topic>Intensive care medicine</topic><topic>Medical sciences</topic><topic>Mitochondria - metabolism</topic><topic>Neurology</topic><topic>Oxidation-Reduction</topic><topic>Spectroscopy, Near-Infrared</topic><topic>Sus scrofa</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GAGNON, Roy E</creatorcontrib><creatorcontrib>GAGNON, Faith A</creatorcontrib><creatorcontrib>MACNAB, Andrew J</creatorcontrib><creatorcontrib>LEBLANC, Jacques G</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Metabolic brain disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GAGNON, Roy E</au><au>GAGNON, Faith A</au><au>MACNAB, Andrew J</au><au>LEBLANC, Jacques G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature, hematocrit, pH, and glucose 4-way ANOVA of cytochrome C oxidase redox status during systemic cold circulatory arrest in swine</atitle><jtitle>Metabolic brain disease</jtitle><addtitle>Metab Brain Dis</addtitle><date>2005-06-01</date><risdate>2005</risdate><volume>20</volume><issue>2</issue><spage>105</spage><epage>113</epage><pages>105-113</pages><issn>0885-7490</issn><eissn>1573-7365</eissn><coden>MBDIEE</coden><abstract>Various investigators using near infrared spectroscopy (NIRS) have reported differing patterns of cytochrome C oxidase (cytochrome a,a3) redox status in similar brain oxygenation studies. We investigated whether distinctive differences could be due to combinations of variations in temperature, hematocrit, pH, and glucose.
Thirty-six healthy 10 kg commercial juvenile swine on cardiopulmonary bypass underwent 2-8 sequential periods of circulatory arrest. Prior to each arrest, key physiological variables were adjusted to match a random selection of one of 81 combinations of high, normal, or low levels of hypothermia, hematocrit, pH, and serum glucose. In the course of the study, the combinations were repeated twice to yield 162 NIRS data sets.
The mean rate of change in net oxidized minus reduced cytochrome a,a3 redox status in the brain following 7.5 min of ischemia was 0.49 +/- 0.26 micromol L(-1) min(-1), and, the corresponding mean magnitude of change was -1.23 +/- 0.57 micromol L(-1). The rate of change was influenced by temperature but not by hematocrit, pH, or glucose, either singly or in combination.
The respiratory response in mitochondria during systemic circulatory arrest is significantly influenced by temperature.</abstract><cop>New York, NY</cop><pub>Springer</pub><pmid>15938129</pmid><doi>10.1007/s11011-005-4148-4</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7490 |
ispartof | Metabolic brain disease, 2005-06, Vol.20 (2), p.105-113 |
issn | 0885-7490 1573-7365 |
language | eng |
recordid | cdi_proquest_miscellaneous_67899504 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy Animals Bacterial diseases Bacterial diseases of the nervous system. Bacterial myositis Biological and medical sciences Blood Glucose - physiology Cardiopulmonary Bypass Cell Respiration - physiology Cerebrovascular Circulation - physiology Electron Transport Complex IV - metabolism Emergency and intensive cardiocirculatory care. Cardiogenic shock. Coronary intensive care Energy Metabolism - physiology Heart Arrest, Induced Hematocrit Human bacterial diseases Hydrogen-Ion Concentration Hypothermia, Induced Hypoxia-Ischemia, Brain - metabolism Hypoxia-Ischemia, Brain - physiopathology Infectious diseases Intensive care medicine Medical sciences Mitochondria - metabolism Neurology Oxidation-Reduction Spectroscopy, Near-Infrared Sus scrofa Temperature |
title | Temperature, hematocrit, pH, and glucose 4-way ANOVA of cytochrome C oxidase redox status during systemic cold circulatory arrest in swine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A13%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature,%20hematocrit,%20pH,%20and%20glucose%204-way%20ANOVA%20of%20cytochrome%20C%20oxidase%20redox%20status%20during%20systemic%20cold%20circulatory%20arrest%20in%20swine&rft.jtitle=Metabolic%20brain%20disease&rft.au=GAGNON,%20Roy%20E&rft.date=2005-06-01&rft.volume=20&rft.issue=2&rft.spage=105&rft.epage=113&rft.pages=105-113&rft.issn=0885-7490&rft.eissn=1573-7365&rft.coden=MBDIEE&rft_id=info:doi/10.1007/s11011-005-4148-4&rft_dat=%3Cproquest_cross%3E845683791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221204129&rft_id=info:pmid/15938129&rfr_iscdi=true |