Temperature, hematocrit, pH, and glucose 4-way ANOVA of cytochrome C oxidase redox status during systemic cold circulatory arrest in swine

Various investigators using near infrared spectroscopy (NIRS) have reported differing patterns of cytochrome C oxidase (cytochrome a,a3) redox status in similar brain oxygenation studies. We investigated whether distinctive differences could be due to combinations of variations in temperature, hemat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolic brain disease 2005-06, Vol.20 (2), p.105-113
Hauptverfasser: GAGNON, Roy E, GAGNON, Faith A, MACNAB, Andrew J, LEBLANC, Jacques G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue 2
container_start_page 105
container_title Metabolic brain disease
container_volume 20
creator GAGNON, Roy E
GAGNON, Faith A
MACNAB, Andrew J
LEBLANC, Jacques G
description Various investigators using near infrared spectroscopy (NIRS) have reported differing patterns of cytochrome C oxidase (cytochrome a,a3) redox status in similar brain oxygenation studies. We investigated whether distinctive differences could be due to combinations of variations in temperature, hematocrit, pH, and glucose. Thirty-six healthy 10 kg commercial juvenile swine on cardiopulmonary bypass underwent 2-8 sequential periods of circulatory arrest. Prior to each arrest, key physiological variables were adjusted to match a random selection of one of 81 combinations of high, normal, or low levels of hypothermia, hematocrit, pH, and serum glucose. In the course of the study, the combinations were repeated twice to yield 162 NIRS data sets. The mean rate of change in net oxidized minus reduced cytochrome a,a3 redox status in the brain following 7.5 min of ischemia was 0.49 +/- 0.26 micromol L(-1) min(-1), and, the corresponding mean magnitude of change was -1.23 +/- 0.57 micromol L(-1). The rate of change was influenced by temperature but not by hematocrit, pH, or glucose, either singly or in combination. The respiratory response in mitochondria during systemic circulatory arrest is significantly influenced by temperature.
doi_str_mv 10.1007/s11011-005-4148-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67899504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>845683791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-3d5b673206408b368dd6358872d04ee7ed163637e4451d59b0911de8b4b8dc003</originalsourceid><addsrcrecordid>eNqFkc1u1DAURi0EotPCA7BBFhKsJmDH_8vRCFqkim4KW8ux77SukniwE7V5BZ4aj2akSmxY3c25n6-_g9A7Sj5TQtSXQimhtCFENJxy3fAXaEWFYo1iUrxEK6K1aBQ35Aydl_JACGGCmtfojArDNG3NCv25hWEP2U1zhjW-h8FNyec4rfH-ao3dGPBdP_tUAPPm0S148-Pm1wanHfZLBe9zGgBvcXqKwVUmQ0hPuEw1ruAw5zje4bKUCYbosU99wD5mP_f1kbxglzOUCccRl8c4whv0auf6Am9P8wL9_Pb1dnvVXN9cft9urhvPmJkaFkQnFWuJ5ER3TOoQJBNaqzYQDqAgUMkkU8C5oEGYjhhKA-iOdzr4WsEF-nTM3ef0e64X2CEWD33vRkhzsVJpYwTh_wWp4kIyekj88A_4kOY81k_YtqUt4bXqCtEj5HMqJcPO7nMcXF4sJfag0x512qrTHnTawwXvT8FzN0B43jj5q8DHE-CKd_0uu9HH8sxJLWtThv0FiaGnIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221204129</pqid></control><display><type>article</type><title>Temperature, hematocrit, pH, and glucose 4-way ANOVA of cytochrome C oxidase redox status during systemic cold circulatory arrest in swine</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>GAGNON, Roy E ; GAGNON, Faith A ; MACNAB, Andrew J ; LEBLANC, Jacques G</creator><creatorcontrib>GAGNON, Roy E ; GAGNON, Faith A ; MACNAB, Andrew J ; LEBLANC, Jacques G</creatorcontrib><description>Various investigators using near infrared spectroscopy (NIRS) have reported differing patterns of cytochrome C oxidase (cytochrome a,a3) redox status in similar brain oxygenation studies. We investigated whether distinctive differences could be due to combinations of variations in temperature, hematocrit, pH, and glucose. Thirty-six healthy 10 kg commercial juvenile swine on cardiopulmonary bypass underwent 2-8 sequential periods of circulatory arrest. Prior to each arrest, key physiological variables were adjusted to match a random selection of one of 81 combinations of high, normal, or low levels of hypothermia, hematocrit, pH, and serum glucose. In the course of the study, the combinations were repeated twice to yield 162 NIRS data sets. The mean rate of change in net oxidized minus reduced cytochrome a,a3 redox status in the brain following 7.5 min of ischemia was 0.49 +/- 0.26 micromol L(-1) min(-1), and, the corresponding mean magnitude of change was -1.23 +/- 0.57 micromol L(-1). The rate of change was influenced by temperature but not by hematocrit, pH, or glucose, either singly or in combination. The respiratory response in mitochondria during systemic circulatory arrest is significantly influenced by temperature.</description><identifier>ISSN: 0885-7490</identifier><identifier>EISSN: 1573-7365</identifier><identifier>DOI: 10.1007/s11011-005-4148-4</identifier><identifier>PMID: 15938129</identifier><identifier>CODEN: MBDIEE</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Animals ; Bacterial diseases ; Bacterial diseases of the nervous system. Bacterial myositis ; Biological and medical sciences ; Blood Glucose - physiology ; Cardiopulmonary Bypass ; Cell Respiration - physiology ; Cerebrovascular Circulation - physiology ; Electron Transport Complex IV - metabolism ; Emergency and intensive cardiocirculatory care. Cardiogenic shock. Coronary intensive care ; Energy Metabolism - physiology ; Heart Arrest, Induced ; Hematocrit ; Human bacterial diseases ; Hydrogen-Ion Concentration ; Hypothermia, Induced ; Hypoxia-Ischemia, Brain - metabolism ; Hypoxia-Ischemia, Brain - physiopathology ; Infectious diseases ; Intensive care medicine ; Medical sciences ; Mitochondria - metabolism ; Neurology ; Oxidation-Reduction ; Spectroscopy, Near-Infrared ; Sus scrofa ; Temperature</subject><ispartof>Metabolic brain disease, 2005-06, Vol.20 (2), p.105-113</ispartof><rights>2005 INIST-CNRS</rights><rights>Springer Science + Business Media, Inc. 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c339t-3d5b673206408b368dd6358872d04ee7ed163637e4451d59b0911de8b4b8dc003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16863209$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15938129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>GAGNON, Roy E</creatorcontrib><creatorcontrib>GAGNON, Faith A</creatorcontrib><creatorcontrib>MACNAB, Andrew J</creatorcontrib><creatorcontrib>LEBLANC, Jacques G</creatorcontrib><title>Temperature, hematocrit, pH, and glucose 4-way ANOVA of cytochrome C oxidase redox status during systemic cold circulatory arrest in swine</title><title>Metabolic brain disease</title><addtitle>Metab Brain Dis</addtitle><description>Various investigators using near infrared spectroscopy (NIRS) have reported differing patterns of cytochrome C oxidase (cytochrome a,a3) redox status in similar brain oxygenation studies. We investigated whether distinctive differences could be due to combinations of variations in temperature, hematocrit, pH, and glucose. Thirty-six healthy 10 kg commercial juvenile swine on cardiopulmonary bypass underwent 2-8 sequential periods of circulatory arrest. Prior to each arrest, key physiological variables were adjusted to match a random selection of one of 81 combinations of high, normal, or low levels of hypothermia, hematocrit, pH, and serum glucose. In the course of the study, the combinations were repeated twice to yield 162 NIRS data sets. The mean rate of change in net oxidized minus reduced cytochrome a,a3 redox status in the brain following 7.5 min of ischemia was 0.49 +/- 0.26 micromol L(-1) min(-1), and, the corresponding mean magnitude of change was -1.23 +/- 0.57 micromol L(-1). The rate of change was influenced by temperature but not by hematocrit, pH, or glucose, either singly or in combination. The respiratory response in mitochondria during systemic circulatory arrest is significantly influenced by temperature.</description><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Animals</subject><subject>Bacterial diseases</subject><subject>Bacterial diseases of the nervous system. Bacterial myositis</subject><subject>Biological and medical sciences</subject><subject>Blood Glucose - physiology</subject><subject>Cardiopulmonary Bypass</subject><subject>Cell Respiration - physiology</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Electron Transport Complex IV - metabolism</subject><subject>Emergency and intensive cardiocirculatory care. Cardiogenic shock. Coronary intensive care</subject><subject>Energy Metabolism - physiology</subject><subject>Heart Arrest, Induced</subject><subject>Hematocrit</subject><subject>Human bacterial diseases</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hypothermia, Induced</subject><subject>Hypoxia-Ischemia, Brain - metabolism</subject><subject>Hypoxia-Ischemia, Brain - physiopathology</subject><subject>Infectious diseases</subject><subject>Intensive care medicine</subject><subject>Medical sciences</subject><subject>Mitochondria - metabolism</subject><subject>Neurology</subject><subject>Oxidation-Reduction</subject><subject>Spectroscopy, Near-Infrared</subject><subject>Sus scrofa</subject><subject>Temperature</subject><issn>0885-7490</issn><issn>1573-7365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkc1u1DAURi0EotPCA7BBFhKsJmDH_8vRCFqkim4KW8ux77SukniwE7V5BZ4aj2akSmxY3c25n6-_g9A7Sj5TQtSXQimhtCFENJxy3fAXaEWFYo1iUrxEK6K1aBQ35Aydl_JACGGCmtfojArDNG3NCv25hWEP2U1zhjW-h8FNyec4rfH-ao3dGPBdP_tUAPPm0S148-Pm1wanHfZLBe9zGgBvcXqKwVUmQ0hPuEw1ruAw5zje4bKUCYbosU99wD5mP_f1kbxglzOUCccRl8c4whv0auf6Am9P8wL9_Pb1dnvVXN9cft9urhvPmJkaFkQnFWuJ5ER3TOoQJBNaqzYQDqAgUMkkU8C5oEGYjhhKA-iOdzr4WsEF-nTM3ef0e64X2CEWD33vRkhzsVJpYwTh_wWp4kIyekj88A_4kOY81k_YtqUt4bXqCtEj5HMqJcPO7nMcXF4sJfag0x512qrTHnTawwXvT8FzN0B43jj5q8DHE-CKd_0uu9HH8sxJLWtThv0FiaGnIg</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>GAGNON, Roy E</creator><creator>GAGNON, Faith A</creator><creator>MACNAB, Andrew J</creator><creator>LEBLANC, Jacques G</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20050601</creationdate><title>Temperature, hematocrit, pH, and glucose 4-way ANOVA of cytochrome C oxidase redox status during systemic cold circulatory arrest in swine</title><author>GAGNON, Roy E ; GAGNON, Faith A ; MACNAB, Andrew J ; LEBLANC, Jacques G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-3d5b673206408b368dd6358872d04ee7ed163637e4451d59b0911de8b4b8dc003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Animals</topic><topic>Bacterial diseases</topic><topic>Bacterial diseases of the nervous system. Bacterial myositis</topic><topic>Biological and medical sciences</topic><topic>Blood Glucose - physiology</topic><topic>Cardiopulmonary Bypass</topic><topic>Cell Respiration - physiology</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Electron Transport Complex IV - metabolism</topic><topic>Emergency and intensive cardiocirculatory care. Cardiogenic shock. Coronary intensive care</topic><topic>Energy Metabolism - physiology</topic><topic>Heart Arrest, Induced</topic><topic>Hematocrit</topic><topic>Human bacterial diseases</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hypothermia, Induced</topic><topic>Hypoxia-Ischemia, Brain - metabolism</topic><topic>Hypoxia-Ischemia, Brain - physiopathology</topic><topic>Infectious diseases</topic><topic>Intensive care medicine</topic><topic>Medical sciences</topic><topic>Mitochondria - metabolism</topic><topic>Neurology</topic><topic>Oxidation-Reduction</topic><topic>Spectroscopy, Near-Infrared</topic><topic>Sus scrofa</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GAGNON, Roy E</creatorcontrib><creatorcontrib>GAGNON, Faith A</creatorcontrib><creatorcontrib>MACNAB, Andrew J</creatorcontrib><creatorcontrib>LEBLANC, Jacques G</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Metabolic brain disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GAGNON, Roy E</au><au>GAGNON, Faith A</au><au>MACNAB, Andrew J</au><au>LEBLANC, Jacques G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature, hematocrit, pH, and glucose 4-way ANOVA of cytochrome C oxidase redox status during systemic cold circulatory arrest in swine</atitle><jtitle>Metabolic brain disease</jtitle><addtitle>Metab Brain Dis</addtitle><date>2005-06-01</date><risdate>2005</risdate><volume>20</volume><issue>2</issue><spage>105</spage><epage>113</epage><pages>105-113</pages><issn>0885-7490</issn><eissn>1573-7365</eissn><coden>MBDIEE</coden><abstract>Various investigators using near infrared spectroscopy (NIRS) have reported differing patterns of cytochrome C oxidase (cytochrome a,a3) redox status in similar brain oxygenation studies. We investigated whether distinctive differences could be due to combinations of variations in temperature, hematocrit, pH, and glucose. Thirty-six healthy 10 kg commercial juvenile swine on cardiopulmonary bypass underwent 2-8 sequential periods of circulatory arrest. Prior to each arrest, key physiological variables were adjusted to match a random selection of one of 81 combinations of high, normal, or low levels of hypothermia, hematocrit, pH, and serum glucose. In the course of the study, the combinations were repeated twice to yield 162 NIRS data sets. The mean rate of change in net oxidized minus reduced cytochrome a,a3 redox status in the brain following 7.5 min of ischemia was 0.49 +/- 0.26 micromol L(-1) min(-1), and, the corresponding mean magnitude of change was -1.23 +/- 0.57 micromol L(-1). The rate of change was influenced by temperature but not by hematocrit, pH, or glucose, either singly or in combination. The respiratory response in mitochondria during systemic circulatory arrest is significantly influenced by temperature.</abstract><cop>New York, NY</cop><pub>Springer</pub><pmid>15938129</pmid><doi>10.1007/s11011-005-4148-4</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-7490
ispartof Metabolic brain disease, 2005-06, Vol.20 (2), p.105-113
issn 0885-7490
1573-7365
language eng
recordid cdi_proquest_miscellaneous_67899504
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Animals
Bacterial diseases
Bacterial diseases of the nervous system. Bacterial myositis
Biological and medical sciences
Blood Glucose - physiology
Cardiopulmonary Bypass
Cell Respiration - physiology
Cerebrovascular Circulation - physiology
Electron Transport Complex IV - metabolism
Emergency and intensive cardiocirculatory care. Cardiogenic shock. Coronary intensive care
Energy Metabolism - physiology
Heart Arrest, Induced
Hematocrit
Human bacterial diseases
Hydrogen-Ion Concentration
Hypothermia, Induced
Hypoxia-Ischemia, Brain - metabolism
Hypoxia-Ischemia, Brain - physiopathology
Infectious diseases
Intensive care medicine
Medical sciences
Mitochondria - metabolism
Neurology
Oxidation-Reduction
Spectroscopy, Near-Infrared
Sus scrofa
Temperature
title Temperature, hematocrit, pH, and glucose 4-way ANOVA of cytochrome C oxidase redox status during systemic cold circulatory arrest in swine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A13%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature,%20hematocrit,%20pH,%20and%20glucose%204-way%20ANOVA%20of%20cytochrome%20C%20oxidase%20redox%20status%20during%20systemic%20cold%20circulatory%20arrest%20in%20swine&rft.jtitle=Metabolic%20brain%20disease&rft.au=GAGNON,%20Roy%20E&rft.date=2005-06-01&rft.volume=20&rft.issue=2&rft.spage=105&rft.epage=113&rft.pages=105-113&rft.issn=0885-7490&rft.eissn=1573-7365&rft.coden=MBDIEE&rft_id=info:doi/10.1007/s11011-005-4148-4&rft_dat=%3Cproquest_cross%3E845683791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221204129&rft_id=info:pmid/15938129&rfr_iscdi=true