FEA analysis of silicone MCP implant

This paper discusses finite element study of silicone rubber prosthesis for the metacarpophalangeal joint of the hand. Based on the experimental data, a material model which incorporates test data available for different stress states was chosen and calibrated. Finite element models for three commer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2006-01, Vol.39 (7), p.1217-1226
Hauptverfasser: Podnos, E., Becker, E., Klawitter, J., Strzepa, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1226
container_issue 7
container_start_page 1217
container_title Journal of biomechanics
container_volume 39
creator Podnos, E.
Becker, E.
Klawitter, J.
Strzepa, P.
description This paper discusses finite element study of silicone rubber prosthesis for the metacarpophalangeal joint of the hand. Based on the experimental data, a material model which incorporates test data available for different stress states was chosen and calibrated. Finite element models for three commercially available silicone joint prosthesis were developed. All models incorporated the same material model and allowed for large deformations. These models were validated against the experimental data and analyzed under demanding loading conditions. Results such as highly non-linear material behavior, dependence on the loading history and large deformations near wrinkle formation in the hinge area of the joint clearly show the necessity and importance of using multi-stress- state non-linear material models and accounting for large deformations.
doi_str_mv 10.1016/j.jbiomech.2005.03.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67891924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929005001545</els_id><sourcerecordid>67891924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-ee9fa0bc2a20a0a8d0206e0e42562bdaebfde7ba9b6a9c7f7fa43a420aaaec823</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRbK2-Qgko7hLPXJpkdkppVajoQtfDZHKCE3KpM6nQt3dKK4Kbrs7ifP-5fIRMKSQUaHpXJ3Vh-xbNZ8IAZgnwBKg8IWOaZzxmPIdTMgZgNJZMwohceF8DQCYyeU5GdCZTCpKNyc1y8RDpTjdbb33UV5G3jTV9h9HL_C2y7brR3XBJzirdeLw61An5WC7e50_x6vXxef6wio1gsyFGlJWGwjDNQIPOS2CQImBopqwoNRZViVmhZZFqabIqq7TgWgRYazQ54xNyu5-7dv3XBv2gWusNNuEG7DdepVkuqWTiKEil4EIAD-D1P7DuNy68GxjgQjIOfLc33VPG9d47rNTa2Va7bYDUTreq1a9utdOtgKugOwSnh_GbosXyL3bwG4D7PYBB27dFp7yx2BksrUMzqLK3x3b8ALIFkmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034923032</pqid></control><display><type>article</type><title>FEA analysis of silicone MCP implant</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Podnos, E. ; Becker, E. ; Klawitter, J. ; Strzepa, P.</creator><creatorcontrib>Podnos, E. ; Becker, E. ; Klawitter, J. ; Strzepa, P.</creatorcontrib><description>This paper discusses finite element study of silicone rubber prosthesis for the metacarpophalangeal joint of the hand. Based on the experimental data, a material model which incorporates test data available for different stress states was chosen and calibrated. Finite element models for three commercially available silicone joint prosthesis were developed. All models incorporated the same material model and allowed for large deformations. These models were validated against the experimental data and analyzed under demanding loading conditions. Results such as highly non-linear material behavior, dependence on the loading history and large deformations near wrinkle formation in the hinge area of the joint clearly show the necessity and importance of using multi-stress- state non-linear material models and accounting for large deformations.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2005.03.019</identifier><identifier>PMID: 15961092</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Bones ; Computer Simulation ; Deformation ; Elasticity ; Elastomers ; Equipment Failure Analysis ; Finite Element Analysis ; Finite element method ; Hardness ; Heat treating ; Hyperelasticity ; Medical equipment ; Metacarpophalangeal Joint ; Models, Chemical ; Prostheses ; Prosthesis Design ; Rubber ; Rubber constitutive model ; Shear strain ; Silicone finger joint implant ; Silicones ; Silicones - chemistry ; Stress analysis ; Stress, Mechanical ; Transplants &amp; implants ; Weight-Bearing</subject><ispartof>Journal of biomechanics, 2006-01, Vol.39 (7), p.1217-1226</ispartof><rights>2005 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-ee9fa0bc2a20a0a8d0206e0e42562bdaebfde7ba9b6a9c7f7fa43a420aaaec823</citedby><cites>FETCH-LOGICAL-c425t-ee9fa0bc2a20a0a8d0206e0e42562bdaebfde7ba9b6a9c7f7fa43a420aaaec823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1034923032?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,64361,64363,64365,65309,72215</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15961092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Podnos, E.</creatorcontrib><creatorcontrib>Becker, E.</creatorcontrib><creatorcontrib>Klawitter, J.</creatorcontrib><creatorcontrib>Strzepa, P.</creatorcontrib><title>FEA analysis of silicone MCP implant</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>This paper discusses finite element study of silicone rubber prosthesis for the metacarpophalangeal joint of the hand. Based on the experimental data, a material model which incorporates test data available for different stress states was chosen and calibrated. Finite element models for three commercially available silicone joint prosthesis were developed. All models incorporated the same material model and allowed for large deformations. These models were validated against the experimental data and analyzed under demanding loading conditions. Results such as highly non-linear material behavior, dependence on the loading history and large deformations near wrinkle formation in the hinge area of the joint clearly show the necessity and importance of using multi-stress- state non-linear material models and accounting for large deformations.</description><subject>Bones</subject><subject>Computer Simulation</subject><subject>Deformation</subject><subject>Elasticity</subject><subject>Elastomers</subject><subject>Equipment Failure Analysis</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Hardness</subject><subject>Heat treating</subject><subject>Hyperelasticity</subject><subject>Medical equipment</subject><subject>Metacarpophalangeal Joint</subject><subject>Models, Chemical</subject><subject>Prostheses</subject><subject>Prosthesis Design</subject><subject>Rubber</subject><subject>Rubber constitutive model</subject><subject>Shear strain</subject><subject>Silicone finger joint implant</subject><subject>Silicones</subject><subject>Silicones - chemistry</subject><subject>Stress analysis</subject><subject>Stress, Mechanical</subject><subject>Transplants &amp; implants</subject><subject>Weight-Bearing</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkMtKw0AUhgdRbK2-Qgko7hLPXJpkdkppVajoQtfDZHKCE3KpM6nQt3dKK4Kbrs7ifP-5fIRMKSQUaHpXJ3Vh-xbNZ8IAZgnwBKg8IWOaZzxmPIdTMgZgNJZMwohceF8DQCYyeU5GdCZTCpKNyc1y8RDpTjdbb33UV5G3jTV9h9HL_C2y7brR3XBJzirdeLw61An5WC7e50_x6vXxef6wio1gsyFGlJWGwjDNQIPOS2CQImBopqwoNRZViVmhZZFqabIqq7TgWgRYazQ54xNyu5-7dv3XBv2gWusNNuEG7DdepVkuqWTiKEil4EIAD-D1P7DuNy68GxjgQjIOfLc33VPG9d47rNTa2Va7bYDUTreq1a9utdOtgKugOwSnh_GbosXyL3bwG4D7PYBB27dFp7yx2BksrUMzqLK3x3b8ALIFkmw</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Podnos, E.</creator><creator>Becker, E.</creator><creator>Klawitter, J.</creator><creator>Strzepa, P.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7QO</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20060101</creationdate><title>FEA analysis of silicone MCP implant</title><author>Podnos, E. ; Becker, E. ; Klawitter, J. ; Strzepa, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-ee9fa0bc2a20a0a8d0206e0e42562bdaebfde7ba9b6a9c7f7fa43a420aaaec823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bones</topic><topic>Computer Simulation</topic><topic>Deformation</topic><topic>Elasticity</topic><topic>Elastomers</topic><topic>Equipment Failure Analysis</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Hardness</topic><topic>Heat treating</topic><topic>Hyperelasticity</topic><topic>Medical equipment</topic><topic>Metacarpophalangeal Joint</topic><topic>Models, Chemical</topic><topic>Prostheses</topic><topic>Prosthesis Design</topic><topic>Rubber</topic><topic>Rubber constitutive model</topic><topic>Shear strain</topic><topic>Silicone finger joint implant</topic><topic>Silicones</topic><topic>Silicones - chemistry</topic><topic>Stress analysis</topic><topic>Stress, Mechanical</topic><topic>Transplants &amp; implants</topic><topic>Weight-Bearing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Podnos, E.</creatorcontrib><creatorcontrib>Becker, E.</creatorcontrib><creatorcontrib>Klawitter, J.</creatorcontrib><creatorcontrib>Strzepa, P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Podnos, E.</au><au>Becker, E.</au><au>Klawitter, J.</au><au>Strzepa, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FEA analysis of silicone MCP implant</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2006-01-01</date><risdate>2006</risdate><volume>39</volume><issue>7</issue><spage>1217</spage><epage>1226</epage><pages>1217-1226</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>This paper discusses finite element study of silicone rubber prosthesis for the metacarpophalangeal joint of the hand. Based on the experimental data, a material model which incorporates test data available for different stress states was chosen and calibrated. Finite element models for three commercially available silicone joint prosthesis were developed. All models incorporated the same material model and allowed for large deformations. These models were validated against the experimental data and analyzed under demanding loading conditions. Results such as highly non-linear material behavior, dependence on the loading history and large deformations near wrinkle formation in the hinge area of the joint clearly show the necessity and importance of using multi-stress- state non-linear material models and accounting for large deformations.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>15961092</pmid><doi>10.1016/j.jbiomech.2005.03.019</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2006-01, Vol.39 (7), p.1217-1226
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_67891924
source MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland
subjects Bones
Computer Simulation
Deformation
Elasticity
Elastomers
Equipment Failure Analysis
Finite Element Analysis
Finite element method
Hardness
Heat treating
Hyperelasticity
Medical equipment
Metacarpophalangeal Joint
Models, Chemical
Prostheses
Prosthesis Design
Rubber
Rubber constitutive model
Shear strain
Silicone finger joint implant
Silicones
Silicones - chemistry
Stress analysis
Stress, Mechanical
Transplants & implants
Weight-Bearing
title FEA analysis of silicone MCP implant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FEA%20analysis%20of%20silicone%20MCP%20implant&rft.jtitle=Journal%20of%20biomechanics&rft.au=Podnos,%20E.&rft.date=2006-01-01&rft.volume=39&rft.issue=7&rft.spage=1217&rft.epage=1226&rft.pages=1217-1226&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2005.03.019&rft_dat=%3Cproquest_cross%3E67891924%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034923032&rft_id=info:pmid/15961092&rft_els_id=S0021929005001545&rfr_iscdi=true