High-resolution Structures of Escherichia coli cDsbD in Different Redox States: A Combined Crystallographic, Biochemical and Computational Study

Escherichia coli DsbD transports electrons from cytoplasmic thioredoxin to periplasmic target proteins. DsbD is composed of an N-terminal (nDsbD) and a C-terminal (cDsbD) periplasmic domain, connected by a central transmembrane domain. Each domain possesses two cysteine residues essential for electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2006-05, Vol.358 (3), p.829-845
Hauptverfasser: Stirnimann, Christian U., Rozhkova, Anna, Grauschopf, Ulla, Böckmann, Rainer A., Glockshuber, Rudi, Capitani, Guido, Grütter, Markus G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 845
container_issue 3
container_start_page 829
container_title Journal of molecular biology
container_volume 358
creator Stirnimann, Christian U.
Rozhkova, Anna
Grauschopf, Ulla
Böckmann, Rainer A.
Glockshuber, Rudi
Capitani, Guido
Grütter, Markus G.
description Escherichia coli DsbD transports electrons from cytoplasmic thioredoxin to periplasmic target proteins. DsbD is composed of an N-terminal (nDsbD) and a C-terminal (cDsbD) periplasmic domain, connected by a central transmembrane domain. Each domain possesses two cysteine residues essential for electron transport. The transport proceeds via disulfide exchange reactions from cytoplasmic thioredoxin to the central transmembrane domain and via cDsbD to nDsbD, which then reduces the periplasmic target proteins. We determined four high-resolution structures of cDsbD: oxidized (1.65 Å resolution), chemically reduced (1.3 Å), photo-reduced (1.1 Å) and chemically reduced at pH increased from 4.6 to 7. The latter structure was refined at 0.99 Å resolution, the highest achieved so far for a thioredoxin superfamily member. The data reveal unprecedented structural details of cDsbD, demonstrating that the domain is very rigid and undergoes hardly any conformational change upon disulfide reduction or interaction with nDsbD. In full agreement with the crystallographic results, guanidinium chloride-induced unfolding and refolding experiments indicate that oxidized and reduced cDsbD are equally stable. We confirmed the structural rigidity of cDsbD by molecular dynamics simulations. A remarkable feature of cDsbD is the p K a of 9.3 for the active site Cys461: this value, determined using two different experimental methods, surprisingly was around 2.5 units higher than expected on the basis of the redox potential. Additionally, taking advantage of the very high quality of the cDsbD structures, we carried out p K a calculations, which gave results in agreement with the experimental findings. In conclusion, our wide-scope analysis of cDsbD, encompassing atomic-resolution crystallography, computational chemistry and biophysical measurements, highlighted two so far unrecognized key aspects of this domain: its unusual redox properties and extreme rigidity. Both are likely to be correlated to the role of cDsbD as a covalently linked electron shuttle between the membrane domain and the N-terminal periplasmic domain of DsbD.
doi_str_mv 10.1016/j.jmb.2006.02.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67890179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283606002166</els_id><sourcerecordid>67890179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-8ebab0155819cb5aed60df52cdccfd134473ec826949a1028fe68c2a79a8391a3</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo7uzqD_AiOXmy20rSH2k9rTOrKywIrp5DOqneydDdGZO0OP9if7IZZsCbngqK530L6iHkFYOSAWve7crd1JccoCmBlyDgCVkxkF0hGyGfkhUA5wWXorkglzHuAKAWlXxOLlhTV7Ws-Io83rqHbREw-nFJzs_0PoXFpCVvqB_oTTRbDM5snabGj46aTew31M1044YBA86JfkPrf-ecThjf02u69lPvZrR0HQ4x6XH0D0Hvt868pR-dz32TM3qkerZHdL_kYD6cN_dpsYcX5Nmgx4gvz_OK_Ph08319W9x9_fxlfX1XmKqSqZDY6x5YXUvWmb7WaBuwQ82NNWawTFRVK9BI3nRVpxlwOWAjDddtp6XomBZX5M2pdx_8zwVjUpOLBsdRz-iXqJpWdsDa7r8ga1k-I0UG2Qk0wccYcFD74CYdDoqBOvpSO5V9qaMvBVxlXznz-ly-9BPav4mzoAx8OAGYf_HLYVDROJwNWhfQJGW9-0f9HwgTqAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17182683</pqid></control><display><type>article</type><title>High-resolution Structures of Escherichia coli cDsbD in Different Redox States: A Combined Crystallographic, Biochemical and Computational Study</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Stirnimann, Christian U. ; Rozhkova, Anna ; Grauschopf, Ulla ; Böckmann, Rainer A. ; Glockshuber, Rudi ; Capitani, Guido ; Grütter, Markus G.</creator><creatorcontrib>Stirnimann, Christian U. ; Rozhkova, Anna ; Grauschopf, Ulla ; Böckmann, Rainer A. ; Glockshuber, Rudi ; Capitani, Guido ; Grütter, Markus G.</creatorcontrib><description>Escherichia coli DsbD transports electrons from cytoplasmic thioredoxin to periplasmic target proteins. DsbD is composed of an N-terminal (nDsbD) and a C-terminal (cDsbD) periplasmic domain, connected by a central transmembrane domain. Each domain possesses two cysteine residues essential for electron transport. The transport proceeds via disulfide exchange reactions from cytoplasmic thioredoxin to the central transmembrane domain and via cDsbD to nDsbD, which then reduces the periplasmic target proteins. We determined four high-resolution structures of cDsbD: oxidized (1.65 Å resolution), chemically reduced (1.3 Å), photo-reduced (1.1 Å) and chemically reduced at pH increased from 4.6 to 7. The latter structure was refined at 0.99 Å resolution, the highest achieved so far for a thioredoxin superfamily member. The data reveal unprecedented structural details of cDsbD, demonstrating that the domain is very rigid and undergoes hardly any conformational change upon disulfide reduction or interaction with nDsbD. In full agreement with the crystallographic results, guanidinium chloride-induced unfolding and refolding experiments indicate that oxidized and reduced cDsbD are equally stable. We confirmed the structural rigidity of cDsbD by molecular dynamics simulations. A remarkable feature of cDsbD is the p K a of 9.3 for the active site Cys461: this value, determined using two different experimental methods, surprisingly was around 2.5 units higher than expected on the basis of the redox potential. Additionally, taking advantage of the very high quality of the cDsbD structures, we carried out p K a calculations, which gave results in agreement with the experimental findings. In conclusion, our wide-scope analysis of cDsbD, encompassing atomic-resolution crystallography, computational chemistry and biophysical measurements, highlighted two so far unrecognized key aspects of this domain: its unusual redox properties and extreme rigidity. Both are likely to be correlated to the role of cDsbD as a covalently linked electron shuttle between the membrane domain and the N-terminal periplasmic domain of DsbD.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2006.02.030</identifier><identifier>PMID: 16545842</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amino Acid Sequence ; Binding Sites ; cDsbD ; Computing Methodologies ; Conserved Sequence ; Crystallography, X-Ray ; Cysteine - genetics ; Cysteine - metabolism ; Disulfides - metabolism ; Escherichia coli ; Escherichia coli - chemistry ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; high-resolution crystal structures ; Humans ; Membrane Proteins - chemistry ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; oxidative protein folding ; Oxidoreductases ; Protein Denaturation ; protein stability ; Protein Structure, Tertiary ; redox properties ; Sequence Alignment ; Structural Homology, Protein ; Thermodynamics ; Thioredoxins - chemistry ; Thioredoxins - metabolism ; Titrimetry</subject><ispartof>Journal of molecular biology, 2006-05, Vol.358 (3), p.829-845</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-8ebab0155819cb5aed60df52cdccfd134473ec826949a1028fe68c2a79a8391a3</citedby><cites>FETCH-LOGICAL-c448t-8ebab0155819cb5aed60df52cdccfd134473ec826949a1028fe68c2a79a8391a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmb.2006.02.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16545842$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stirnimann, Christian U.</creatorcontrib><creatorcontrib>Rozhkova, Anna</creatorcontrib><creatorcontrib>Grauschopf, Ulla</creatorcontrib><creatorcontrib>Böckmann, Rainer A.</creatorcontrib><creatorcontrib>Glockshuber, Rudi</creatorcontrib><creatorcontrib>Capitani, Guido</creatorcontrib><creatorcontrib>Grütter, Markus G.</creatorcontrib><title>High-resolution Structures of Escherichia coli cDsbD in Different Redox States: A Combined Crystallographic, Biochemical and Computational Study</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Escherichia coli DsbD transports electrons from cytoplasmic thioredoxin to periplasmic target proteins. DsbD is composed of an N-terminal (nDsbD) and a C-terminal (cDsbD) periplasmic domain, connected by a central transmembrane domain. Each domain possesses two cysteine residues essential for electron transport. The transport proceeds via disulfide exchange reactions from cytoplasmic thioredoxin to the central transmembrane domain and via cDsbD to nDsbD, which then reduces the periplasmic target proteins. We determined four high-resolution structures of cDsbD: oxidized (1.65 Å resolution), chemically reduced (1.3 Å), photo-reduced (1.1 Å) and chemically reduced at pH increased from 4.6 to 7. The latter structure was refined at 0.99 Å resolution, the highest achieved so far for a thioredoxin superfamily member. The data reveal unprecedented structural details of cDsbD, demonstrating that the domain is very rigid and undergoes hardly any conformational change upon disulfide reduction or interaction with nDsbD. In full agreement with the crystallographic results, guanidinium chloride-induced unfolding and refolding experiments indicate that oxidized and reduced cDsbD are equally stable. We confirmed the structural rigidity of cDsbD by molecular dynamics simulations. A remarkable feature of cDsbD is the p K a of 9.3 for the active site Cys461: this value, determined using two different experimental methods, surprisingly was around 2.5 units higher than expected on the basis of the redox potential. Additionally, taking advantage of the very high quality of the cDsbD structures, we carried out p K a calculations, which gave results in agreement with the experimental findings. In conclusion, our wide-scope analysis of cDsbD, encompassing atomic-resolution crystallography, computational chemistry and biophysical measurements, highlighted two so far unrecognized key aspects of this domain: its unusual redox properties and extreme rigidity. Both are likely to be correlated to the role of cDsbD as a covalently linked electron shuttle between the membrane domain and the N-terminal periplasmic domain of DsbD.</description><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>cDsbD</subject><subject>Computing Methodologies</subject><subject>Conserved Sequence</subject><subject>Crystallography, X-Ray</subject><subject>Cysteine - genetics</subject><subject>Cysteine - metabolism</subject><subject>Disulfides - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>high-resolution crystal structures</subject><subject>Humans</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Oxidation-Reduction</subject><subject>oxidative protein folding</subject><subject>Oxidoreductases</subject><subject>Protein Denaturation</subject><subject>protein stability</subject><subject>Protein Structure, Tertiary</subject><subject>redox properties</subject><subject>Sequence Alignment</subject><subject>Structural Homology, Protein</subject><subject>Thermodynamics</subject><subject>Thioredoxins - chemistry</subject><subject>Thioredoxins - metabolism</subject><subject>Titrimetry</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2LFDEQhoMo7uzqD_AiOXmy20rSH2k9rTOrKywIrp5DOqneydDdGZO0OP9if7IZZsCbngqK530L6iHkFYOSAWve7crd1JccoCmBlyDgCVkxkF0hGyGfkhUA5wWXorkglzHuAKAWlXxOLlhTV7Ws-Io83rqHbREw-nFJzs_0PoXFpCVvqB_oTTRbDM5snabGj46aTew31M1044YBA86JfkPrf-ecThjf02u69lPvZrR0HQ4x6XH0D0Hvt868pR-dz32TM3qkerZHdL_kYD6cN_dpsYcX5Nmgx4gvz_OK_Ph08319W9x9_fxlfX1XmKqSqZDY6x5YXUvWmb7WaBuwQ82NNWawTFRVK9BI3nRVpxlwOWAjDddtp6XomBZX5M2pdx_8zwVjUpOLBsdRz-iXqJpWdsDa7r8ga1k-I0UG2Qk0wccYcFD74CYdDoqBOvpSO5V9qaMvBVxlXznz-ly-9BPav4mzoAx8OAGYf_HLYVDROJwNWhfQJGW9-0f9HwgTqAk</recordid><startdate>20060505</startdate><enddate>20060505</enddate><creator>Stirnimann, Christian U.</creator><creator>Rozhkova, Anna</creator><creator>Grauschopf, Ulla</creator><creator>Böckmann, Rainer A.</creator><creator>Glockshuber, Rudi</creator><creator>Capitani, Guido</creator><creator>Grütter, Markus G.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20060505</creationdate><title>High-resolution Structures of Escherichia coli cDsbD in Different Redox States: A Combined Crystallographic, Biochemical and Computational Study</title><author>Stirnimann, Christian U. ; Rozhkova, Anna ; Grauschopf, Ulla ; Böckmann, Rainer A. ; Glockshuber, Rudi ; Capitani, Guido ; Grütter, Markus G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-8ebab0155819cb5aed60df52cdccfd134473ec826949a1028fe68c2a79a8391a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>cDsbD</topic><topic>Computing Methodologies</topic><topic>Conserved Sequence</topic><topic>Crystallography, X-Ray</topic><topic>Cysteine - genetics</topic><topic>Cysteine - metabolism</topic><topic>Disulfides - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>high-resolution crystal structures</topic><topic>Humans</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Oxidation-Reduction</topic><topic>oxidative protein folding</topic><topic>Oxidoreductases</topic><topic>Protein Denaturation</topic><topic>protein stability</topic><topic>Protein Structure, Tertiary</topic><topic>redox properties</topic><topic>Sequence Alignment</topic><topic>Structural Homology, Protein</topic><topic>Thermodynamics</topic><topic>Thioredoxins - chemistry</topic><topic>Thioredoxins - metabolism</topic><topic>Titrimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stirnimann, Christian U.</creatorcontrib><creatorcontrib>Rozhkova, Anna</creatorcontrib><creatorcontrib>Grauschopf, Ulla</creatorcontrib><creatorcontrib>Böckmann, Rainer A.</creatorcontrib><creatorcontrib>Glockshuber, Rudi</creatorcontrib><creatorcontrib>Capitani, Guido</creatorcontrib><creatorcontrib>Grütter, Markus G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stirnimann, Christian U.</au><au>Rozhkova, Anna</au><au>Grauschopf, Ulla</au><au>Böckmann, Rainer A.</au><au>Glockshuber, Rudi</au><au>Capitani, Guido</au><au>Grütter, Markus G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-resolution Structures of Escherichia coli cDsbD in Different Redox States: A Combined Crystallographic, Biochemical and Computational Study</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2006-05-05</date><risdate>2006</risdate><volume>358</volume><issue>3</issue><spage>829</spage><epage>845</epage><pages>829-845</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Escherichia coli DsbD transports electrons from cytoplasmic thioredoxin to periplasmic target proteins. DsbD is composed of an N-terminal (nDsbD) and a C-terminal (cDsbD) periplasmic domain, connected by a central transmembrane domain. Each domain possesses two cysteine residues essential for electron transport. The transport proceeds via disulfide exchange reactions from cytoplasmic thioredoxin to the central transmembrane domain and via cDsbD to nDsbD, which then reduces the periplasmic target proteins. We determined four high-resolution structures of cDsbD: oxidized (1.65 Å resolution), chemically reduced (1.3 Å), photo-reduced (1.1 Å) and chemically reduced at pH increased from 4.6 to 7. The latter structure was refined at 0.99 Å resolution, the highest achieved so far for a thioredoxin superfamily member. The data reveal unprecedented structural details of cDsbD, demonstrating that the domain is very rigid and undergoes hardly any conformational change upon disulfide reduction or interaction with nDsbD. In full agreement with the crystallographic results, guanidinium chloride-induced unfolding and refolding experiments indicate that oxidized and reduced cDsbD are equally stable. We confirmed the structural rigidity of cDsbD by molecular dynamics simulations. A remarkable feature of cDsbD is the p K a of 9.3 for the active site Cys461: this value, determined using two different experimental methods, surprisingly was around 2.5 units higher than expected on the basis of the redox potential. Additionally, taking advantage of the very high quality of the cDsbD structures, we carried out p K a calculations, which gave results in agreement with the experimental findings. In conclusion, our wide-scope analysis of cDsbD, encompassing atomic-resolution crystallography, computational chemistry and biophysical measurements, highlighted two so far unrecognized key aspects of this domain: its unusual redox properties and extreme rigidity. Both are likely to be correlated to the role of cDsbD as a covalently linked electron shuttle between the membrane domain and the N-terminal periplasmic domain of DsbD.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>16545842</pmid><doi>10.1016/j.jmb.2006.02.030</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2006-05, Vol.358 (3), p.829-845
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_67890179
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Amino Acid Sequence
Binding Sites
cDsbD
Computing Methodologies
Conserved Sequence
Crystallography, X-Ray
Cysteine - genetics
Cysteine - metabolism
Disulfides - metabolism
Escherichia coli
Escherichia coli - chemistry
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
high-resolution crystal structures
Humans
Membrane Proteins - chemistry
Membrane Proteins - genetics
Membrane Proteins - metabolism
Models, Molecular
Molecular Sequence Data
Oxidation-Reduction
oxidative protein folding
Oxidoreductases
Protein Denaturation
protein stability
Protein Structure, Tertiary
redox properties
Sequence Alignment
Structural Homology, Protein
Thermodynamics
Thioredoxins - chemistry
Thioredoxins - metabolism
Titrimetry
title High-resolution Structures of Escherichia coli cDsbD in Different Redox States: A Combined Crystallographic, Biochemical and Computational Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-resolution%20Structures%20of%20Escherichia%20coli%20cDsbD%20in%20Different%20Redox%20States:%20A%20Combined%20Crystallographic,%20Biochemical%20and%20Computational%20Study&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Stirnimann,%20Christian%20U.&rft.date=2006-05-05&rft.volume=358&rft.issue=3&rft.spage=829&rft.epage=845&rft.pages=829-845&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2006.02.030&rft_dat=%3Cproquest_cross%3E67890179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17182683&rft_id=info:pmid/16545842&rft_els_id=S0022283606002166&rfr_iscdi=true