Design Optimization of Blood Shearing Instrument by Computational Fluid Dynamics

:  Rational design of blood‐wetted devices requires a careful consideration of shear‐induced trauma and activation of blood elements. Critical levels of shear exposure may be established in vitro through the use of devices specifically designed to prescribe both the magnitude and duration of shear e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial organs 2005-06, Vol.29 (6), p.482-489
Hauptverfasser: Wu, Jingchun, Antaki, James F., Snyder, Trevor A., Wagner, William R., Borovetz, Harvey S., Paden, Bradley E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 489
container_issue 6
container_start_page 482
container_title Artificial organs
container_volume 29
creator Wu, Jingchun
Antaki, James F.
Snyder, Trevor A.
Wagner, William R.
Borovetz, Harvey S.
Paden, Bradley E.
description :  Rational design of blood‐wetted devices requires a careful consideration of shear‐induced trauma and activation of blood elements. Critical levels of shear exposure may be established in vitro through the use of devices specifically designed to prescribe both the magnitude and duration of shear exposure. However, it is exceptionally difficult to create a homogeneous shear‐exposure history by conventional means. This study was undertaken to develop a Blood Shearing Instrument (BSI) with an optimized flow path which localized shear exposure within a rotating outer ring and a stationary conical spindle. By adjustment of the rotational speed and the gap dimension, the BSI is designed to generate shear stress magnitudes up to 1500 Pa for exposure time between 0.0015 and 0.20 s with a pressure drop of 100 mm Hg. Computational fluid dynamics (CFD) revealed that a flow path designed by first‐order analysis and intuition exhibited unfavorable pressure gradient, vortices, and undesirable regions of reverse flow. An optimized design was evolved utilizing a parameterized geometric model and automatic mesh generation to eliminate vortices and reversal flow and to avoid unfavorable pressure gradients. Analysis of the flow and shear fields for the extreme limits of the shear gap demonstrated an improvement in homogeneity due to shape optimization and the limitations of an annular shear device for achieving completely uniform shear exposure.
doi_str_mv 10.1111/j.1525-1594.2005.29082.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67886718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67886718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5632-1c5c3e99b3af1b5e1cedb7b26fd25811459e035548d01e8aa43e179474fb5f73</originalsourceid><addsrcrecordid>eNqNkctv00AQh1eIqg2l_wLaEzebfT8uSCWhoVJEqhKJ3lZre1w2-JF6bZHw1-M81B7LXmal-eY30nwIYUpSOr5P65RKJhMqrUgZITJllhiWbt-gyXPjLZoQqkgilXi4QO9iXBNCtCDqHF2MfaasURN0N4MYHhu83PShDn99H9oGtyX-UrVtgX_8At-F5hHfNrHvhhqaHmc7PG3rzdAfWF_hm2oIBZ7tGl-HPL5HZ6WvIlyd6iVa3XxdTb8li-X8dnq9SHKpOEtoLnMO1mbclzSTQHMoMp0xVRZMGkqFtEC4lMIUhILxXnCg2gotykyWml-ij8fYTdc-DRB7V4eYQ1X5BtohOqWNUZqaV0FmhZWcvw5SzRVhio2gOYJ518bYQek2Xah9t3OUuL0et3Z7C25vwe31uIMetx1HP5x2DFkNxcvgyccIfD4Cf0IFu_8OdtfL-8N3DEiOASH2sH0O8N3v8SRcS_fz-9yJu_vFav4g3Yz_A29krYE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17360262</pqid></control><display><type>article</type><title>Design Optimization of Blood Shearing Instrument by Computational Fluid Dynamics</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wu, Jingchun ; Antaki, James F. ; Snyder, Trevor A. ; Wagner, William R. ; Borovetz, Harvey S. ; Paden, Bradley E.</creator><creatorcontrib>Wu, Jingchun ; Antaki, James F. ; Snyder, Trevor A. ; Wagner, William R. ; Borovetz, Harvey S. ; Paden, Bradley E.</creatorcontrib><description>:  Rational design of blood‐wetted devices requires a careful consideration of shear‐induced trauma and activation of blood elements. Critical levels of shear exposure may be established in vitro through the use of devices specifically designed to prescribe both the magnitude and duration of shear exposure. However, it is exceptionally difficult to create a homogeneous shear‐exposure history by conventional means. This study was undertaken to develop a Blood Shearing Instrument (BSI) with an optimized flow path which localized shear exposure within a rotating outer ring and a stationary conical spindle. By adjustment of the rotational speed and the gap dimension, the BSI is designed to generate shear stress magnitudes up to 1500 Pa for exposure time between 0.0015 and 0.20 s with a pressure drop of 100 mm Hg. Computational fluid dynamics (CFD) revealed that a flow path designed by first‐order analysis and intuition exhibited unfavorable pressure gradient, vortices, and undesirable regions of reverse flow. An optimized design was evolved utilizing a parameterized geometric model and automatic mesh generation to eliminate vortices and reversal flow and to avoid unfavorable pressure gradients. Analysis of the flow and shear fields for the extreme limits of the shear gap demonstrated an improvement in homogeneity due to shape optimization and the limitations of an annular shear device for achieving completely uniform shear exposure.</description><identifier>ISSN: 0160-564X</identifier><identifier>EISSN: 1525-1594</identifier><identifier>DOI: 10.1111/j.1525-1594.2005.29082.x</identifier><identifier>PMID: 15926986</identifier><language>eng</language><publisher>Oxford, UK and Malden, USA: Blackwell Science Inc</publisher><subject>Algorithms ; Computational Biology ; Computational fluid dynamics ; Computer Simulation ; Equipment Design ; Heart-Assist Devices - adverse effects ; Hemolysis ; Hemolysis - physiology ; Hemorheology - instrumentation ; Humans ; In Vitro Techniques ; Left ventricular assist device ; Optimization ; Shear stress history ; Stress, Mechanical</subject><ispartof>Artificial organs, 2005-06, Vol.29 (6), p.482-489</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5632-1c5c3e99b3af1b5e1cedb7b26fd25811459e035548d01e8aa43e179474fb5f73</citedby><cites>FETCH-LOGICAL-c5632-1c5c3e99b3af1b5e1cedb7b26fd25811459e035548d01e8aa43e179474fb5f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1525-1594.2005.29082.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1525-1594.2005.29082.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15926986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Jingchun</creatorcontrib><creatorcontrib>Antaki, James F.</creatorcontrib><creatorcontrib>Snyder, Trevor A.</creatorcontrib><creatorcontrib>Wagner, William R.</creatorcontrib><creatorcontrib>Borovetz, Harvey S.</creatorcontrib><creatorcontrib>Paden, Bradley E.</creatorcontrib><title>Design Optimization of Blood Shearing Instrument by Computational Fluid Dynamics</title><title>Artificial organs</title><addtitle>Artif Organs</addtitle><description>:  Rational design of blood‐wetted devices requires a careful consideration of shear‐induced trauma and activation of blood elements. Critical levels of shear exposure may be established in vitro through the use of devices specifically designed to prescribe both the magnitude and duration of shear exposure. However, it is exceptionally difficult to create a homogeneous shear‐exposure history by conventional means. This study was undertaken to develop a Blood Shearing Instrument (BSI) with an optimized flow path which localized shear exposure within a rotating outer ring and a stationary conical spindle. By adjustment of the rotational speed and the gap dimension, the BSI is designed to generate shear stress magnitudes up to 1500 Pa for exposure time between 0.0015 and 0.20 s with a pressure drop of 100 mm Hg. Computational fluid dynamics (CFD) revealed that a flow path designed by first‐order analysis and intuition exhibited unfavorable pressure gradient, vortices, and undesirable regions of reverse flow. An optimized design was evolved utilizing a parameterized geometric model and automatic mesh generation to eliminate vortices and reversal flow and to avoid unfavorable pressure gradients. Analysis of the flow and shear fields for the extreme limits of the shear gap demonstrated an improvement in homogeneity due to shape optimization and the limitations of an annular shear device for achieving completely uniform shear exposure.</description><subject>Algorithms</subject><subject>Computational Biology</subject><subject>Computational fluid dynamics</subject><subject>Computer Simulation</subject><subject>Equipment Design</subject><subject>Heart-Assist Devices - adverse effects</subject><subject>Hemolysis</subject><subject>Hemolysis - physiology</subject><subject>Hemorheology - instrumentation</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Left ventricular assist device</subject><subject>Optimization</subject><subject>Shear stress history</subject><subject>Stress, Mechanical</subject><issn>0160-564X</issn><issn>1525-1594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctv00AQh1eIqg2l_wLaEzebfT8uSCWhoVJEqhKJ3lZre1w2-JF6bZHw1-M81B7LXmal-eY30nwIYUpSOr5P65RKJhMqrUgZITJllhiWbt-gyXPjLZoQqkgilXi4QO9iXBNCtCDqHF2MfaasURN0N4MYHhu83PShDn99H9oGtyX-UrVtgX_8At-F5hHfNrHvhhqaHmc7PG3rzdAfWF_hm2oIBZ7tGl-HPL5HZ6WvIlyd6iVa3XxdTb8li-X8dnq9SHKpOEtoLnMO1mbclzSTQHMoMp0xVRZMGkqFtEC4lMIUhILxXnCg2gotykyWml-ij8fYTdc-DRB7V4eYQ1X5BtohOqWNUZqaV0FmhZWcvw5SzRVhio2gOYJ518bYQek2Xah9t3OUuL0et3Z7C25vwe31uIMetx1HP5x2DFkNxcvgyccIfD4Cf0IFu_8OdtfL-8N3DEiOASH2sH0O8N3v8SRcS_fz-9yJu_vFav4g3Yz_A29krYE</recordid><startdate>200506</startdate><enddate>200506</enddate><creator>Wu, Jingchun</creator><creator>Antaki, James F.</creator><creator>Snyder, Trevor A.</creator><creator>Wagner, William R.</creator><creator>Borovetz, Harvey S.</creator><creator>Paden, Bradley E.</creator><general>Blackwell Science Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>200506</creationdate><title>Design Optimization of Blood Shearing Instrument by Computational Fluid Dynamics</title><author>Wu, Jingchun ; Antaki, James F. ; Snyder, Trevor A. ; Wagner, William R. ; Borovetz, Harvey S. ; Paden, Bradley E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5632-1c5c3e99b3af1b5e1cedb7b26fd25811459e035548d01e8aa43e179474fb5f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Computational Biology</topic><topic>Computational fluid dynamics</topic><topic>Computer Simulation</topic><topic>Equipment Design</topic><topic>Heart-Assist Devices - adverse effects</topic><topic>Hemolysis</topic><topic>Hemolysis - physiology</topic><topic>Hemorheology - instrumentation</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Left ventricular assist device</topic><topic>Optimization</topic><topic>Shear stress history</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jingchun</creatorcontrib><creatorcontrib>Antaki, James F.</creatorcontrib><creatorcontrib>Snyder, Trevor A.</creatorcontrib><creatorcontrib>Wagner, William R.</creatorcontrib><creatorcontrib>Borovetz, Harvey S.</creatorcontrib><creatorcontrib>Paden, Bradley E.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jingchun</au><au>Antaki, James F.</au><au>Snyder, Trevor A.</au><au>Wagner, William R.</au><au>Borovetz, Harvey S.</au><au>Paden, Bradley E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Optimization of Blood Shearing Instrument by Computational Fluid Dynamics</atitle><jtitle>Artificial organs</jtitle><addtitle>Artif Organs</addtitle><date>2005-06</date><risdate>2005</risdate><volume>29</volume><issue>6</issue><spage>482</spage><epage>489</epage><pages>482-489</pages><issn>0160-564X</issn><eissn>1525-1594</eissn><abstract>:  Rational design of blood‐wetted devices requires a careful consideration of shear‐induced trauma and activation of blood elements. Critical levels of shear exposure may be established in vitro through the use of devices specifically designed to prescribe both the magnitude and duration of shear exposure. However, it is exceptionally difficult to create a homogeneous shear‐exposure history by conventional means. This study was undertaken to develop a Blood Shearing Instrument (BSI) with an optimized flow path which localized shear exposure within a rotating outer ring and a stationary conical spindle. By adjustment of the rotational speed and the gap dimension, the BSI is designed to generate shear stress magnitudes up to 1500 Pa for exposure time between 0.0015 and 0.20 s with a pressure drop of 100 mm Hg. Computational fluid dynamics (CFD) revealed that a flow path designed by first‐order analysis and intuition exhibited unfavorable pressure gradient, vortices, and undesirable regions of reverse flow. An optimized design was evolved utilizing a parameterized geometric model and automatic mesh generation to eliminate vortices and reversal flow and to avoid unfavorable pressure gradients. Analysis of the flow and shear fields for the extreme limits of the shear gap demonstrated an improvement in homogeneity due to shape optimization and the limitations of an annular shear device for achieving completely uniform shear exposure.</abstract><cop>Oxford, UK and Malden, USA</cop><pub>Blackwell Science Inc</pub><pmid>15926986</pmid><doi>10.1111/j.1525-1594.2005.29082.x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0160-564X
ispartof Artificial organs, 2005-06, Vol.29 (6), p.482-489
issn 0160-564X
1525-1594
language eng
recordid cdi_proquest_miscellaneous_67886718
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Computational Biology
Computational fluid dynamics
Computer Simulation
Equipment Design
Heart-Assist Devices - adverse effects
Hemolysis
Hemolysis - physiology
Hemorheology - instrumentation
Humans
In Vitro Techniques
Left ventricular assist device
Optimization
Shear stress history
Stress, Mechanical
title Design Optimization of Blood Shearing Instrument by Computational Fluid Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A41%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Optimization%20of%20Blood%20Shearing%20Instrument%20by%20Computational%20Fluid%20Dynamics&rft.jtitle=Artificial%20organs&rft.au=Wu,%20Jingchun&rft.date=2005-06&rft.volume=29&rft.issue=6&rft.spage=482&rft.epage=489&rft.pages=482-489&rft.issn=0160-564X&rft.eissn=1525-1594&rft_id=info:doi/10.1111/j.1525-1594.2005.29082.x&rft_dat=%3Cproquest_cross%3E67886718%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17360262&rft_id=info:pmid/15926986&rfr_iscdi=true