Very low intensity alternating current decreases cell proliferation

Electric fields impact cellular functions by activation of ion channels or by interfering with cell membrane integrity. Ion channels can regulate cell cycle and play a role in tumorigenesis. While the cell cycle may be directly altered by ion fluxes, exposure to direct electric current of sufficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glia 2005-07, Vol.51 (1), p.65-72
Hauptverfasser: Cucullo, Luca, Dini, Gabriele, Hallene, Kerri L., Fazio, Vincent, Ilkanich, Erin V., Igboechi, Chiazor, Kight, Kelly M., Agarwal, Mukesh K., Garrity-Moses, Mary, Janigro, Damir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue 1
container_start_page 65
container_title Glia
container_volume 51
creator Cucullo, Luca
Dini, Gabriele
Hallene, Kerri L.
Fazio, Vincent
Ilkanich, Erin V.
Igboechi, Chiazor
Kight, Kelly M.
Agarwal, Mukesh K.
Garrity-Moses, Mary
Janigro, Damir
description Electric fields impact cellular functions by activation of ion channels or by interfering with cell membrane integrity. Ion channels can regulate cell cycle and play a role in tumorigenesis. While the cell cycle may be directly altered by ion fluxes, exposure to direct electric current of sufficient intensity may decrease tumor burden by generating chemical products, including cytotoxic molecules or heat. We report that in the absence of thermal influences, low‐frequency, low‐intensity, alternating current (AC) directly affects cell proliferation without a significant deleterious contribution to cell survival. These effects were observed in normal human cells and in brain and prostate neoplasms, but not in lung cancer. The effects of AC stimulation required a permissive role for GIRK2 (or KIR3.2) potassium channels and were mimicked by raising extracellular potassium concentrations. Cell death could be achieved at higher AC frequencies (>75 Hz) or intensities (>8.5 μA); at lower frequencies/intensities, AC stimulation did not cause apoptotic cellular changes. Our findings implicate a role for transmembrane potassium fluxes via inward rectifier channels in the regulation of cell cycle. Brain stimulators currently used for the treatment of neurological disorders may thus also be used for the treatment of brain (or other) tumors. © 2005 Wiley‐Liss, Inc.
doi_str_mv 10.1002/glia.20188
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67880423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67880423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4618-5fb3489ea1a33ba1c803dc604d656b9fabe98cb820b3b8c7318541f5d808090d3</originalsourceid><addsrcrecordid>eNp90M9P2zAUB3ALbYKOceEPmHIZh0mB9-rEeTmiarRoBQ7b4Gg5zgvy5ibMTgX97-eu3bjtZFn6vF9fIU4RzhFgevHonTmfAhIdiAlCTTmiVG_EBKgucixqPBLvYvwBgOlTHYojLKuqBiomYnbPYZP54Tlz_ch9dOMmM37k0JvR9Y-ZXYfA_Zi1bAObyDGz7H32FAbvOg4JDf178bYzPvLJ_j0W368-f5st8uXd_Hp2ucxtoZDysmtkQTUbNFI2Bi2BbK2ColWlaurONFyTbWgKjWzIVhKpLLArWwKCGlp5LM52fdP0X2uOo165uF3H9Dyso1YVERRTmeCnHbRhiDFwp5-CW5mw0Qh6G5neRqb_RJbwh33XdbPi9pXuM0rg4x6YaI3vgumti69OUaXSssnhzj07z5v_jNTz5fXl3-H5rsbFkV_-1ZjwM10jq1I_3M71l9nN4urrQmolfwOLJJLP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67880423</pqid></control><display><type>article</type><title>Very low intensity alternating current decreases cell proliferation</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Cucullo, Luca ; Dini, Gabriele ; Hallene, Kerri L. ; Fazio, Vincent ; Ilkanich, Erin V. ; Igboechi, Chiazor ; Kight, Kelly M. ; Agarwal, Mukesh K. ; Garrity-Moses, Mary ; Janigro, Damir</creator><creatorcontrib>Cucullo, Luca ; Dini, Gabriele ; Hallene, Kerri L. ; Fazio, Vincent ; Ilkanich, Erin V. ; Igboechi, Chiazor ; Kight, Kelly M. ; Agarwal, Mukesh K. ; Garrity-Moses, Mary ; Janigro, Damir</creatorcontrib><description>Electric fields impact cellular functions by activation of ion channels or by interfering with cell membrane integrity. Ion channels can regulate cell cycle and play a role in tumorigenesis. While the cell cycle may be directly altered by ion fluxes, exposure to direct electric current of sufficient intensity may decrease tumor burden by generating chemical products, including cytotoxic molecules or heat. We report that in the absence of thermal influences, low‐frequency, low‐intensity, alternating current (AC) directly affects cell proliferation without a significant deleterious contribution to cell survival. These effects were observed in normal human cells and in brain and prostate neoplasms, but not in lung cancer. The effects of AC stimulation required a permissive role for GIRK2 (or KIR3.2) potassium channels and were mimicked by raising extracellular potassium concentrations. Cell death could be achieved at higher AC frequencies (&gt;75 Hz) or intensities (&gt;8.5 μA); at lower frequencies/intensities, AC stimulation did not cause apoptotic cellular changes. Our findings implicate a role for transmembrane potassium fluxes via inward rectifier channels in the regulation of cell cycle. Brain stimulators currently used for the treatment of neurological disorders may thus also be used for the treatment of brain (or other) tumors. © 2005 Wiley‐Liss, Inc.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.20188</identifier><identifier>PMID: 15779084</identifier><identifier>CODEN: GLIAEJ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adenylate Kinase - metabolism ; apoptosis ; Astrocytes - physiology ; Biological and medical sciences ; Blotting, Western ; Bromodeoxyuridine ; cancer ; Caspase 3 ; Caspases - metabolism ; cell cycle ; Cell Cycle - physiology ; Cell Proliferation ; Electric Stimulation ; electrical stimulation ; Epilepsy - pathology ; Fundamental and applied biological sciences. Psychology ; G Protein-Coupled Inwardly-Rectifying Potassium Channels ; Hot Temperature ; Humans ; Immunohistochemistry ; ion channels ; Isolated neuron and nerve. Neuroglia ; Neoplasms - pathology ; Neoplasms - therapy ; Potassium - pharmacology ; Potassium Channels, Inwardly Rectifying - metabolism ; Vertebrates: nervous system and sense organs</subject><ispartof>Glia, 2005-07, Vol.51 (1), p.65-72</ispartof><rights>Copyright © 2005 Wiley‐Liss, Inc.</rights><rights>2005 INIST-CNRS</rights><rights>Copyright (c) 2005 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4618-5fb3489ea1a33ba1c803dc604d656b9fabe98cb820b3b8c7318541f5d808090d3</citedby><cites>FETCH-LOGICAL-c4618-5fb3489ea1a33ba1c803dc604d656b9fabe98cb820b3b8c7318541f5d808090d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.20188$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.20188$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16876731$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15779084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cucullo, Luca</creatorcontrib><creatorcontrib>Dini, Gabriele</creatorcontrib><creatorcontrib>Hallene, Kerri L.</creatorcontrib><creatorcontrib>Fazio, Vincent</creatorcontrib><creatorcontrib>Ilkanich, Erin V.</creatorcontrib><creatorcontrib>Igboechi, Chiazor</creatorcontrib><creatorcontrib>Kight, Kelly M.</creatorcontrib><creatorcontrib>Agarwal, Mukesh K.</creatorcontrib><creatorcontrib>Garrity-Moses, Mary</creatorcontrib><creatorcontrib>Janigro, Damir</creatorcontrib><title>Very low intensity alternating current decreases cell proliferation</title><title>Glia</title><addtitle>Glia</addtitle><description>Electric fields impact cellular functions by activation of ion channels or by interfering with cell membrane integrity. Ion channels can regulate cell cycle and play a role in tumorigenesis. While the cell cycle may be directly altered by ion fluxes, exposure to direct electric current of sufficient intensity may decrease tumor burden by generating chemical products, including cytotoxic molecules or heat. We report that in the absence of thermal influences, low‐frequency, low‐intensity, alternating current (AC) directly affects cell proliferation without a significant deleterious contribution to cell survival. These effects were observed in normal human cells and in brain and prostate neoplasms, but not in lung cancer. The effects of AC stimulation required a permissive role for GIRK2 (or KIR3.2) potassium channels and were mimicked by raising extracellular potassium concentrations. Cell death could be achieved at higher AC frequencies (&gt;75 Hz) or intensities (&gt;8.5 μA); at lower frequencies/intensities, AC stimulation did not cause apoptotic cellular changes. Our findings implicate a role for transmembrane potassium fluxes via inward rectifier channels in the regulation of cell cycle. Brain stimulators currently used for the treatment of neurological disorders may thus also be used for the treatment of brain (or other) tumors. © 2005 Wiley‐Liss, Inc.</description><subject>Adenylate Kinase - metabolism</subject><subject>apoptosis</subject><subject>Astrocytes - physiology</subject><subject>Biological and medical sciences</subject><subject>Blotting, Western</subject><subject>Bromodeoxyuridine</subject><subject>cancer</subject><subject>Caspase 3</subject><subject>Caspases - metabolism</subject><subject>cell cycle</subject><subject>Cell Cycle - physiology</subject><subject>Cell Proliferation</subject><subject>Electric Stimulation</subject><subject>electrical stimulation</subject><subject>Epilepsy - pathology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>G Protein-Coupled Inwardly-Rectifying Potassium Channels</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>ion channels</subject><subject>Isolated neuron and nerve. Neuroglia</subject><subject>Neoplasms - pathology</subject><subject>Neoplasms - therapy</subject><subject>Potassium - pharmacology</subject><subject>Potassium Channels, Inwardly Rectifying - metabolism</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90M9P2zAUB3ALbYKOceEPmHIZh0mB9-rEeTmiarRoBQ7b4Gg5zgvy5ibMTgX97-eu3bjtZFn6vF9fIU4RzhFgevHonTmfAhIdiAlCTTmiVG_EBKgucixqPBLvYvwBgOlTHYojLKuqBiomYnbPYZP54Tlz_ch9dOMmM37k0JvR9Y-ZXYfA_Zi1bAObyDGz7H32FAbvOg4JDf178bYzPvLJ_j0W368-f5st8uXd_Hp2ucxtoZDysmtkQTUbNFI2Bi2BbK2ColWlaurONFyTbWgKjWzIVhKpLLArWwKCGlp5LM52fdP0X2uOo165uF3H9Dyso1YVERRTmeCnHbRhiDFwp5-CW5mw0Qh6G5neRqb_RJbwh33XdbPi9pXuM0rg4x6YaI3vgumti69OUaXSssnhzj07z5v_jNTz5fXl3-H5rsbFkV_-1ZjwM10jq1I_3M71l9nN4urrQmolfwOLJJLP</recordid><startdate>200507</startdate><enddate>200507</enddate><creator>Cucullo, Luca</creator><creator>Dini, Gabriele</creator><creator>Hallene, Kerri L.</creator><creator>Fazio, Vincent</creator><creator>Ilkanich, Erin V.</creator><creator>Igboechi, Chiazor</creator><creator>Kight, Kelly M.</creator><creator>Agarwal, Mukesh K.</creator><creator>Garrity-Moses, Mary</creator><creator>Janigro, Damir</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200507</creationdate><title>Very low intensity alternating current decreases cell proliferation</title><author>Cucullo, Luca ; Dini, Gabriele ; Hallene, Kerri L. ; Fazio, Vincent ; Ilkanich, Erin V. ; Igboechi, Chiazor ; Kight, Kelly M. ; Agarwal, Mukesh K. ; Garrity-Moses, Mary ; Janigro, Damir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4618-5fb3489ea1a33ba1c803dc604d656b9fabe98cb820b3b8c7318541f5d808090d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adenylate Kinase - metabolism</topic><topic>apoptosis</topic><topic>Astrocytes - physiology</topic><topic>Biological and medical sciences</topic><topic>Blotting, Western</topic><topic>Bromodeoxyuridine</topic><topic>cancer</topic><topic>Caspase 3</topic><topic>Caspases - metabolism</topic><topic>cell cycle</topic><topic>Cell Cycle - physiology</topic><topic>Cell Proliferation</topic><topic>Electric Stimulation</topic><topic>electrical stimulation</topic><topic>Epilepsy - pathology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>G Protein-Coupled Inwardly-Rectifying Potassium Channels</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>ion channels</topic><topic>Isolated neuron and nerve. Neuroglia</topic><topic>Neoplasms - pathology</topic><topic>Neoplasms - therapy</topic><topic>Potassium - pharmacology</topic><topic>Potassium Channels, Inwardly Rectifying - metabolism</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cucullo, Luca</creatorcontrib><creatorcontrib>Dini, Gabriele</creatorcontrib><creatorcontrib>Hallene, Kerri L.</creatorcontrib><creatorcontrib>Fazio, Vincent</creatorcontrib><creatorcontrib>Ilkanich, Erin V.</creatorcontrib><creatorcontrib>Igboechi, Chiazor</creatorcontrib><creatorcontrib>Kight, Kelly M.</creatorcontrib><creatorcontrib>Agarwal, Mukesh K.</creatorcontrib><creatorcontrib>Garrity-Moses, Mary</creatorcontrib><creatorcontrib>Janigro, Damir</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cucullo, Luca</au><au>Dini, Gabriele</au><au>Hallene, Kerri L.</au><au>Fazio, Vincent</au><au>Ilkanich, Erin V.</au><au>Igboechi, Chiazor</au><au>Kight, Kelly M.</au><au>Agarwal, Mukesh K.</au><au>Garrity-Moses, Mary</au><au>Janigro, Damir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Very low intensity alternating current decreases cell proliferation</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2005-07</date><risdate>2005</risdate><volume>51</volume><issue>1</issue><spage>65</spage><epage>72</epage><pages>65-72</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><coden>GLIAEJ</coden><abstract>Electric fields impact cellular functions by activation of ion channels or by interfering with cell membrane integrity. Ion channels can regulate cell cycle and play a role in tumorigenesis. While the cell cycle may be directly altered by ion fluxes, exposure to direct electric current of sufficient intensity may decrease tumor burden by generating chemical products, including cytotoxic molecules or heat. We report that in the absence of thermal influences, low‐frequency, low‐intensity, alternating current (AC) directly affects cell proliferation without a significant deleterious contribution to cell survival. These effects were observed in normal human cells and in brain and prostate neoplasms, but not in lung cancer. The effects of AC stimulation required a permissive role for GIRK2 (or KIR3.2) potassium channels and were mimicked by raising extracellular potassium concentrations. Cell death could be achieved at higher AC frequencies (&gt;75 Hz) or intensities (&gt;8.5 μA); at lower frequencies/intensities, AC stimulation did not cause apoptotic cellular changes. Our findings implicate a role for transmembrane potassium fluxes via inward rectifier channels in the regulation of cell cycle. Brain stimulators currently used for the treatment of neurological disorders may thus also be used for the treatment of brain (or other) tumors. © 2005 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15779084</pmid><doi>10.1002/glia.20188</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0894-1491
ispartof Glia, 2005-07, Vol.51 (1), p.65-72
issn 0894-1491
1098-1136
language eng
recordid cdi_proquest_miscellaneous_67880423
source Wiley-Blackwell Journals; MEDLINE
subjects Adenylate Kinase - metabolism
apoptosis
Astrocytes - physiology
Biological and medical sciences
Blotting, Western
Bromodeoxyuridine
cancer
Caspase 3
Caspases - metabolism
cell cycle
Cell Cycle - physiology
Cell Proliferation
Electric Stimulation
electrical stimulation
Epilepsy - pathology
Fundamental and applied biological sciences. Psychology
G Protein-Coupled Inwardly-Rectifying Potassium Channels
Hot Temperature
Humans
Immunohistochemistry
ion channels
Isolated neuron and nerve. Neuroglia
Neoplasms - pathology
Neoplasms - therapy
Potassium - pharmacology
Potassium Channels, Inwardly Rectifying - metabolism
Vertebrates: nervous system and sense organs
title Very low intensity alternating current decreases cell proliferation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A55%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Very%20low%20intensity%20alternating%20current%20decreases%20cell%20proliferation&rft.jtitle=Glia&rft.au=Cucullo,%20Luca&rft.date=2005-07&rft.volume=51&rft.issue=1&rft.spage=65&rft.epage=72&rft.pages=65-72&rft.issn=0894-1491&rft.eissn=1098-1136&rft.coden=GLIAEJ&rft_id=info:doi/10.1002/glia.20188&rft_dat=%3Cproquest_cross%3E67880423%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67880423&rft_id=info:pmid/15779084&rfr_iscdi=true