Very low intensity alternating current decreases cell proliferation
Electric fields impact cellular functions by activation of ion channels or by interfering with cell membrane integrity. Ion channels can regulate cell cycle and play a role in tumorigenesis. While the cell cycle may be directly altered by ion fluxes, exposure to direct electric current of sufficient...
Gespeichert in:
Veröffentlicht in: | Glia 2005-07, Vol.51 (1), p.65-72 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | 1 |
container_start_page | 65 |
container_title | Glia |
container_volume | 51 |
creator | Cucullo, Luca Dini, Gabriele Hallene, Kerri L. Fazio, Vincent Ilkanich, Erin V. Igboechi, Chiazor Kight, Kelly M. Agarwal, Mukesh K. Garrity-Moses, Mary Janigro, Damir |
description | Electric fields impact cellular functions by activation of ion channels or by interfering with cell membrane integrity. Ion channels can regulate cell cycle and play a role in tumorigenesis. While the cell cycle may be directly altered by ion fluxes, exposure to direct electric current of sufficient intensity may decrease tumor burden by generating chemical products, including cytotoxic molecules or heat. We report that in the absence of thermal influences, low‐frequency, low‐intensity, alternating current (AC) directly affects cell proliferation without a significant deleterious contribution to cell survival. These effects were observed in normal human cells and in brain and prostate neoplasms, but not in lung cancer. The effects of AC stimulation required a permissive role for GIRK2 (or KIR3.2) potassium channels and were mimicked by raising extracellular potassium concentrations. Cell death could be achieved at higher AC frequencies (>75 Hz) or intensities (>8.5 μA); at lower frequencies/intensities, AC stimulation did not cause apoptotic cellular changes. Our findings implicate a role for transmembrane potassium fluxes via inward rectifier channels in the regulation of cell cycle. Brain stimulators currently used for the treatment of neurological disorders may thus also be used for the treatment of brain (or other) tumors. © 2005 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/glia.20188 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67880423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67880423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4618-5fb3489ea1a33ba1c803dc604d656b9fabe98cb820b3b8c7318541f5d808090d3</originalsourceid><addsrcrecordid>eNp90M9P2zAUB3ALbYKOceEPmHIZh0mB9-rEeTmiarRoBQ7b4Gg5zgvy5ibMTgX97-eu3bjtZFn6vF9fIU4RzhFgevHonTmfAhIdiAlCTTmiVG_EBKgucixqPBLvYvwBgOlTHYojLKuqBiomYnbPYZP54Tlz_ch9dOMmM37k0JvR9Y-ZXYfA_Zi1bAObyDGz7H32FAbvOg4JDf178bYzPvLJ_j0W368-f5st8uXd_Hp2ucxtoZDysmtkQTUbNFI2Bi2BbK2ColWlaurONFyTbWgKjWzIVhKpLLArWwKCGlp5LM52fdP0X2uOo165uF3H9Dyso1YVERRTmeCnHbRhiDFwp5-CW5mw0Qh6G5neRqb_RJbwh33XdbPi9pXuM0rg4x6YaI3vgumti69OUaXSssnhzj07z5v_jNTz5fXl3-H5rsbFkV_-1ZjwM10jq1I_3M71l9nN4urrQmolfwOLJJLP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67880423</pqid></control><display><type>article</type><title>Very low intensity alternating current decreases cell proliferation</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Cucullo, Luca ; Dini, Gabriele ; Hallene, Kerri L. ; Fazio, Vincent ; Ilkanich, Erin V. ; Igboechi, Chiazor ; Kight, Kelly M. ; Agarwal, Mukesh K. ; Garrity-Moses, Mary ; Janigro, Damir</creator><creatorcontrib>Cucullo, Luca ; Dini, Gabriele ; Hallene, Kerri L. ; Fazio, Vincent ; Ilkanich, Erin V. ; Igboechi, Chiazor ; Kight, Kelly M. ; Agarwal, Mukesh K. ; Garrity-Moses, Mary ; Janigro, Damir</creatorcontrib><description>Electric fields impact cellular functions by activation of ion channels or by interfering with cell membrane integrity. Ion channels can regulate cell cycle and play a role in tumorigenesis. While the cell cycle may be directly altered by ion fluxes, exposure to direct electric current of sufficient intensity may decrease tumor burden by generating chemical products, including cytotoxic molecules or heat. We report that in the absence of thermal influences, low‐frequency, low‐intensity, alternating current (AC) directly affects cell proliferation without a significant deleterious contribution to cell survival. These effects were observed in normal human cells and in brain and prostate neoplasms, but not in lung cancer. The effects of AC stimulation required a permissive role for GIRK2 (or KIR3.2) potassium channels and were mimicked by raising extracellular potassium concentrations. Cell death could be achieved at higher AC frequencies (>75 Hz) or intensities (>8.5 μA); at lower frequencies/intensities, AC stimulation did not cause apoptotic cellular changes. Our findings implicate a role for transmembrane potassium fluxes via inward rectifier channels in the regulation of cell cycle. Brain stimulators currently used for the treatment of neurological disorders may thus also be used for the treatment of brain (or other) tumors. © 2005 Wiley‐Liss, Inc.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.20188</identifier><identifier>PMID: 15779084</identifier><identifier>CODEN: GLIAEJ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adenylate Kinase - metabolism ; apoptosis ; Astrocytes - physiology ; Biological and medical sciences ; Blotting, Western ; Bromodeoxyuridine ; cancer ; Caspase 3 ; Caspases - metabolism ; cell cycle ; Cell Cycle - physiology ; Cell Proliferation ; Electric Stimulation ; electrical stimulation ; Epilepsy - pathology ; Fundamental and applied biological sciences. Psychology ; G Protein-Coupled Inwardly-Rectifying Potassium Channels ; Hot Temperature ; Humans ; Immunohistochemistry ; ion channels ; Isolated neuron and nerve. Neuroglia ; Neoplasms - pathology ; Neoplasms - therapy ; Potassium - pharmacology ; Potassium Channels, Inwardly Rectifying - metabolism ; Vertebrates: nervous system and sense organs</subject><ispartof>Glia, 2005-07, Vol.51 (1), p.65-72</ispartof><rights>Copyright © 2005 Wiley‐Liss, Inc.</rights><rights>2005 INIST-CNRS</rights><rights>Copyright (c) 2005 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4618-5fb3489ea1a33ba1c803dc604d656b9fabe98cb820b3b8c7318541f5d808090d3</citedby><cites>FETCH-LOGICAL-c4618-5fb3489ea1a33ba1c803dc604d656b9fabe98cb820b3b8c7318541f5d808090d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.20188$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.20188$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16876731$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15779084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cucullo, Luca</creatorcontrib><creatorcontrib>Dini, Gabriele</creatorcontrib><creatorcontrib>Hallene, Kerri L.</creatorcontrib><creatorcontrib>Fazio, Vincent</creatorcontrib><creatorcontrib>Ilkanich, Erin V.</creatorcontrib><creatorcontrib>Igboechi, Chiazor</creatorcontrib><creatorcontrib>Kight, Kelly M.</creatorcontrib><creatorcontrib>Agarwal, Mukesh K.</creatorcontrib><creatorcontrib>Garrity-Moses, Mary</creatorcontrib><creatorcontrib>Janigro, Damir</creatorcontrib><title>Very low intensity alternating current decreases cell proliferation</title><title>Glia</title><addtitle>Glia</addtitle><description>Electric fields impact cellular functions by activation of ion channels or by interfering with cell membrane integrity. Ion channels can regulate cell cycle and play a role in tumorigenesis. While the cell cycle may be directly altered by ion fluxes, exposure to direct electric current of sufficient intensity may decrease tumor burden by generating chemical products, including cytotoxic molecules or heat. We report that in the absence of thermal influences, low‐frequency, low‐intensity, alternating current (AC) directly affects cell proliferation without a significant deleterious contribution to cell survival. These effects were observed in normal human cells and in brain and prostate neoplasms, but not in lung cancer. The effects of AC stimulation required a permissive role for GIRK2 (or KIR3.2) potassium channels and were mimicked by raising extracellular potassium concentrations. Cell death could be achieved at higher AC frequencies (>75 Hz) or intensities (>8.5 μA); at lower frequencies/intensities, AC stimulation did not cause apoptotic cellular changes. Our findings implicate a role for transmembrane potassium fluxes via inward rectifier channels in the regulation of cell cycle. Brain stimulators currently used for the treatment of neurological disorders may thus also be used for the treatment of brain (or other) tumors. © 2005 Wiley‐Liss, Inc.</description><subject>Adenylate Kinase - metabolism</subject><subject>apoptosis</subject><subject>Astrocytes - physiology</subject><subject>Biological and medical sciences</subject><subject>Blotting, Western</subject><subject>Bromodeoxyuridine</subject><subject>cancer</subject><subject>Caspase 3</subject><subject>Caspases - metabolism</subject><subject>cell cycle</subject><subject>Cell Cycle - physiology</subject><subject>Cell Proliferation</subject><subject>Electric Stimulation</subject><subject>electrical stimulation</subject><subject>Epilepsy - pathology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>G Protein-Coupled Inwardly-Rectifying Potassium Channels</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>ion channels</subject><subject>Isolated neuron and nerve. Neuroglia</subject><subject>Neoplasms - pathology</subject><subject>Neoplasms - therapy</subject><subject>Potassium - pharmacology</subject><subject>Potassium Channels, Inwardly Rectifying - metabolism</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90M9P2zAUB3ALbYKOceEPmHIZh0mB9-rEeTmiarRoBQ7b4Gg5zgvy5ibMTgX97-eu3bjtZFn6vF9fIU4RzhFgevHonTmfAhIdiAlCTTmiVG_EBKgucixqPBLvYvwBgOlTHYojLKuqBiomYnbPYZP54Tlz_ch9dOMmM37k0JvR9Y-ZXYfA_Zi1bAObyDGz7H32FAbvOg4JDf178bYzPvLJ_j0W368-f5st8uXd_Hp2ucxtoZDysmtkQTUbNFI2Bi2BbK2ColWlaurONFyTbWgKjWzIVhKpLLArWwKCGlp5LM52fdP0X2uOo165uF3H9Dyso1YVERRTmeCnHbRhiDFwp5-CW5mw0Qh6G5neRqb_RJbwh33XdbPi9pXuM0rg4x6YaI3vgumti69OUaXSssnhzj07z5v_jNTz5fXl3-H5rsbFkV_-1ZjwM10jq1I_3M71l9nN4urrQmolfwOLJJLP</recordid><startdate>200507</startdate><enddate>200507</enddate><creator>Cucullo, Luca</creator><creator>Dini, Gabriele</creator><creator>Hallene, Kerri L.</creator><creator>Fazio, Vincent</creator><creator>Ilkanich, Erin V.</creator><creator>Igboechi, Chiazor</creator><creator>Kight, Kelly M.</creator><creator>Agarwal, Mukesh K.</creator><creator>Garrity-Moses, Mary</creator><creator>Janigro, Damir</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200507</creationdate><title>Very low intensity alternating current decreases cell proliferation</title><author>Cucullo, Luca ; Dini, Gabriele ; Hallene, Kerri L. ; Fazio, Vincent ; Ilkanich, Erin V. ; Igboechi, Chiazor ; Kight, Kelly M. ; Agarwal, Mukesh K. ; Garrity-Moses, Mary ; Janigro, Damir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4618-5fb3489ea1a33ba1c803dc604d656b9fabe98cb820b3b8c7318541f5d808090d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adenylate Kinase - metabolism</topic><topic>apoptosis</topic><topic>Astrocytes - physiology</topic><topic>Biological and medical sciences</topic><topic>Blotting, Western</topic><topic>Bromodeoxyuridine</topic><topic>cancer</topic><topic>Caspase 3</topic><topic>Caspases - metabolism</topic><topic>cell cycle</topic><topic>Cell Cycle - physiology</topic><topic>Cell Proliferation</topic><topic>Electric Stimulation</topic><topic>electrical stimulation</topic><topic>Epilepsy - pathology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>G Protein-Coupled Inwardly-Rectifying Potassium Channels</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>ion channels</topic><topic>Isolated neuron and nerve. Neuroglia</topic><topic>Neoplasms - pathology</topic><topic>Neoplasms - therapy</topic><topic>Potassium - pharmacology</topic><topic>Potassium Channels, Inwardly Rectifying - metabolism</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cucullo, Luca</creatorcontrib><creatorcontrib>Dini, Gabriele</creatorcontrib><creatorcontrib>Hallene, Kerri L.</creatorcontrib><creatorcontrib>Fazio, Vincent</creatorcontrib><creatorcontrib>Ilkanich, Erin V.</creatorcontrib><creatorcontrib>Igboechi, Chiazor</creatorcontrib><creatorcontrib>Kight, Kelly M.</creatorcontrib><creatorcontrib>Agarwal, Mukesh K.</creatorcontrib><creatorcontrib>Garrity-Moses, Mary</creatorcontrib><creatorcontrib>Janigro, Damir</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cucullo, Luca</au><au>Dini, Gabriele</au><au>Hallene, Kerri L.</au><au>Fazio, Vincent</au><au>Ilkanich, Erin V.</au><au>Igboechi, Chiazor</au><au>Kight, Kelly M.</au><au>Agarwal, Mukesh K.</au><au>Garrity-Moses, Mary</au><au>Janigro, Damir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Very low intensity alternating current decreases cell proliferation</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2005-07</date><risdate>2005</risdate><volume>51</volume><issue>1</issue><spage>65</spage><epage>72</epage><pages>65-72</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><coden>GLIAEJ</coden><abstract>Electric fields impact cellular functions by activation of ion channels or by interfering with cell membrane integrity. Ion channels can regulate cell cycle and play a role in tumorigenesis. While the cell cycle may be directly altered by ion fluxes, exposure to direct electric current of sufficient intensity may decrease tumor burden by generating chemical products, including cytotoxic molecules or heat. We report that in the absence of thermal influences, low‐frequency, low‐intensity, alternating current (AC) directly affects cell proliferation without a significant deleterious contribution to cell survival. These effects were observed in normal human cells and in brain and prostate neoplasms, but not in lung cancer. The effects of AC stimulation required a permissive role for GIRK2 (or KIR3.2) potassium channels and were mimicked by raising extracellular potassium concentrations. Cell death could be achieved at higher AC frequencies (>75 Hz) or intensities (>8.5 μA); at lower frequencies/intensities, AC stimulation did not cause apoptotic cellular changes. Our findings implicate a role for transmembrane potassium fluxes via inward rectifier channels in the regulation of cell cycle. Brain stimulators currently used for the treatment of neurological disorders may thus also be used for the treatment of brain (or other) tumors. © 2005 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15779084</pmid><doi>10.1002/glia.20188</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1491 |
ispartof | Glia, 2005-07, Vol.51 (1), p.65-72 |
issn | 0894-1491 1098-1136 |
language | eng |
recordid | cdi_proquest_miscellaneous_67880423 |
source | Wiley-Blackwell Journals; MEDLINE |
subjects | Adenylate Kinase - metabolism apoptosis Astrocytes - physiology Biological and medical sciences Blotting, Western Bromodeoxyuridine cancer Caspase 3 Caspases - metabolism cell cycle Cell Cycle - physiology Cell Proliferation Electric Stimulation electrical stimulation Epilepsy - pathology Fundamental and applied biological sciences. Psychology G Protein-Coupled Inwardly-Rectifying Potassium Channels Hot Temperature Humans Immunohistochemistry ion channels Isolated neuron and nerve. Neuroglia Neoplasms - pathology Neoplasms - therapy Potassium - pharmacology Potassium Channels, Inwardly Rectifying - metabolism Vertebrates: nervous system and sense organs |
title | Very low intensity alternating current decreases cell proliferation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A55%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Very%20low%20intensity%20alternating%20current%20decreases%20cell%20proliferation&rft.jtitle=Glia&rft.au=Cucullo,%20Luca&rft.date=2005-07&rft.volume=51&rft.issue=1&rft.spage=65&rft.epage=72&rft.pages=65-72&rft.issn=0894-1491&rft.eissn=1098-1136&rft.coden=GLIAEJ&rft_id=info:doi/10.1002/glia.20188&rft_dat=%3Cproquest_cross%3E67880423%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67880423&rft_id=info:pmid/15779084&rfr_iscdi=true |