Microfiber-Directed Boundary Flow in Press-Fit Microdevices Fabricated from Self-Adhesive Hydrophobic Surfaces

We report a rapid microfluidic device construction technique which does not employ lithography or stamping methods. Device assembly physically combines a silicon wafer, an elastomer (poly(dimethylsiloxane) (PDMS)), and microfibers to form patterns of hydrophobic channels, wells, elbows, or orifices...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2005-06, Vol.77 (11), p.3671-3675
Hauptverfasser: Huang, Tom T, Taylor, David G, Sedlak, Miroslav, Mosier, Nathan S, Ladisch, Michael R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3675
container_issue 11
container_start_page 3671
container_title Analytical chemistry (Washington)
container_volume 77
creator Huang, Tom T
Taylor, David G
Sedlak, Miroslav
Mosier, Nathan S
Ladisch, Michael R
description We report a rapid microfluidic device construction technique which does not employ lithography or stamping methods. Device assembly physically combines a silicon wafer, an elastomer (poly(dimethylsiloxane) (PDMS)), and microfibers to form patterns of hydrophobic channels, wells, elbows, or orifices that direct fluid flow into controlled boundary layers. Tweezers are used to place glass microfibers in a defined pattern onto an elastomeric (PDMS) hydrophobic film. The film is then manually pressed onto a hydrophobic silicon wafer, causing it to adhere to the silicon wafer and form a liquid-tight seal around the fibers. Completed in 15 min, the technique results in an operable microdevice with micrometer-scale features of nanoliter volume. Microfiber-directed boundary flow is achieved by use of the surface wetting properties of the hydrophilic glass fiber and the hydrophobicity of surrounding surfaces. The simplicity of this technique allows quick prototyping of microfluidic components, as well as complete biosensor systems, such as we describe for the detection of pathogenic bacteria.
doi_str_mv 10.1021/ac048228i
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67879296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67879296</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-f03c80745a7c04ebc39057b2ea07a2c1208d8ed0fecfaf346d27fd718c0a01e3</originalsourceid><addsrcrecordid>eNpl0c9rFDEUB_Agil2rB_8BGYQKHqa-JDOTzLG2bitssbiLSC8hk7zQ1NnJmsxU-9-buksX9JRDPu_L-0HIawrHFBj9oA1UkjHpn5AZrRmUjZTsKZkBAC-ZADggL1K6BaAUaPOcHNC6ZVUFfEaGS29icL7DWJ75iGZEW3wM02B1vC_mffhV-KG4iphSOfdj8ZdbvPMGUzHXXfRGP5S4GNbFEntXntgbTP4Oi4t7G8PmJnTeFMspOp1LXpJnTvcJX-3eQ7Kaf1qdXpSLL-efT08Wpa5AjqUDbiSIqtYij4ad4S3UomOoQWhmKANpJVpwaJx2vGosE84KKg1ooMgPybtt7CaGnxOmUa19Mtj3esAwJdUIKVrWNhm-_QfehikOuTXFqGiB15Jn9H6L8ugpRXRqE_0670dRUA8HUI8HyPbNLnDq1mj3crfxDI52QCejexf1YHzau0ZWnFORXbl1Po34-_Ffxx-5ey5qtbpaqvPF9fev13Spvu1ztUn7If5v8A-RsqkF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217903583</pqid></control><display><type>article</type><title>Microfiber-Directed Boundary Flow in Press-Fit Microdevices Fabricated from Self-Adhesive Hydrophobic Surfaces</title><source>MEDLINE</source><source>ACS Publications</source><creator>Huang, Tom T ; Taylor, David G ; Sedlak, Miroslav ; Mosier, Nathan S ; Ladisch, Michael R</creator><creatorcontrib>Huang, Tom T ; Taylor, David G ; Sedlak, Miroslav ; Mosier, Nathan S ; Ladisch, Michael R</creatorcontrib><description>We report a rapid microfluidic device construction technique which does not employ lithography or stamping methods. Device assembly physically combines a silicon wafer, an elastomer (poly(dimethylsiloxane) (PDMS)), and microfibers to form patterns of hydrophobic channels, wells, elbows, or orifices that direct fluid flow into controlled boundary layers. Tweezers are used to place glass microfibers in a defined pattern onto an elastomeric (PDMS) hydrophobic film. The film is then manually pressed onto a hydrophobic silicon wafer, causing it to adhere to the silicon wafer and form a liquid-tight seal around the fibers. Completed in 15 min, the technique results in an operable microdevice with micrometer-scale features of nanoliter volume. Microfiber-directed boundary flow is achieved by use of the surface wetting properties of the hydrophilic glass fiber and the hydrophobicity of surrounding surfaces. The simplicity of this technique allows quick prototyping of microfluidic components, as well as complete biosensor systems, such as we describe for the detection of pathogenic bacteria.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac048228i</identifier><identifier>PMID: 15924403</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Air ; Analytical chemistry ; Biosensors ; Boundary layer ; Chemistry ; Dimethylpolysiloxanes - chemistry ; Equipment Design ; Escherichia coli O157 - cytology ; Escherichia coli O157 - immunology ; Escherichia coli O157 - isolation &amp; purification ; Exact sciences and technology ; Fluorescent Antibody Technique, Direct ; General, instrumentation ; Glass - chemistry ; Green Fluorescent Proteins - analysis ; Green Fluorescent Proteins - biosynthesis ; Hydrophobic and Hydrophilic Interactions ; Microelectromechanical systems ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Pressure ; Sensitivity and Specificity ; Silicon - chemistry ; Silicones - chemistry ; Surface Properties ; Water - chemistry</subject><ispartof>Analytical chemistry (Washington), 2005-06, Vol.77 (11), p.3671-3675</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2005 INIST-CNRS</rights><rights>Copyright American Chemical Society Jun 1, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-f03c80745a7c04ebc39057b2ea07a2c1208d8ed0fecfaf346d27fd718c0a01e3</citedby><cites>FETCH-LOGICAL-a408t-f03c80745a7c04ebc39057b2ea07a2c1208d8ed0fecfaf346d27fd718c0a01e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac048228i$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac048228i$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16843317$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15924403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Tom T</creatorcontrib><creatorcontrib>Taylor, David G</creatorcontrib><creatorcontrib>Sedlak, Miroslav</creatorcontrib><creatorcontrib>Mosier, Nathan S</creatorcontrib><creatorcontrib>Ladisch, Michael R</creatorcontrib><title>Microfiber-Directed Boundary Flow in Press-Fit Microdevices Fabricated from Self-Adhesive Hydrophobic Surfaces</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We report a rapid microfluidic device construction technique which does not employ lithography or stamping methods. Device assembly physically combines a silicon wafer, an elastomer (poly(dimethylsiloxane) (PDMS)), and microfibers to form patterns of hydrophobic channels, wells, elbows, or orifices that direct fluid flow into controlled boundary layers. Tweezers are used to place glass microfibers in a defined pattern onto an elastomeric (PDMS) hydrophobic film. The film is then manually pressed onto a hydrophobic silicon wafer, causing it to adhere to the silicon wafer and form a liquid-tight seal around the fibers. Completed in 15 min, the technique results in an operable microdevice with micrometer-scale features of nanoliter volume. Microfiber-directed boundary flow is achieved by use of the surface wetting properties of the hydrophilic glass fiber and the hydrophobicity of surrounding surfaces. The simplicity of this technique allows quick prototyping of microfluidic components, as well as complete biosensor systems, such as we describe for the detection of pathogenic bacteria.</description><subject>Air</subject><subject>Analytical chemistry</subject><subject>Biosensors</subject><subject>Boundary layer</subject><subject>Chemistry</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Equipment Design</subject><subject>Escherichia coli O157 - cytology</subject><subject>Escherichia coli O157 - immunology</subject><subject>Escherichia coli O157 - isolation &amp; purification</subject><subject>Exact sciences and technology</subject><subject>Fluorescent Antibody Technique, Direct</subject><subject>General, instrumentation</subject><subject>Glass - chemistry</subject><subject>Green Fluorescent Proteins - analysis</subject><subject>Green Fluorescent Proteins - biosynthesis</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Microelectromechanical systems</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Pressure</subject><subject>Sensitivity and Specificity</subject><subject>Silicon - chemistry</subject><subject>Silicones - chemistry</subject><subject>Surface Properties</subject><subject>Water - chemistry</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0c9rFDEUB_Agil2rB_8BGYQKHqa-JDOTzLG2bitssbiLSC8hk7zQ1NnJmsxU-9-buksX9JRDPu_L-0HIawrHFBj9oA1UkjHpn5AZrRmUjZTsKZkBAC-ZADggL1K6BaAUaPOcHNC6ZVUFfEaGS29icL7DWJ75iGZEW3wM02B1vC_mffhV-KG4iphSOfdj8ZdbvPMGUzHXXfRGP5S4GNbFEntXntgbTP4Oi4t7G8PmJnTeFMspOp1LXpJnTvcJX-3eQ7Kaf1qdXpSLL-efT08Wpa5AjqUDbiSIqtYij4ad4S3UomOoQWhmKANpJVpwaJx2vGosE84KKg1ooMgPybtt7CaGnxOmUa19Mtj3esAwJdUIKVrWNhm-_QfehikOuTXFqGiB15Jn9H6L8ugpRXRqE_0670dRUA8HUI8HyPbNLnDq1mj3crfxDI52QCejexf1YHzau0ZWnFORXbl1Po34-_Ffxx-5ey5qtbpaqvPF9fev13Spvu1ztUn7If5v8A-RsqkF</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Huang, Tom T</creator><creator>Taylor, David G</creator><creator>Sedlak, Miroslav</creator><creator>Mosier, Nathan S</creator><creator>Ladisch, Michael R</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20050601</creationdate><title>Microfiber-Directed Boundary Flow in Press-Fit Microdevices Fabricated from Self-Adhesive Hydrophobic Surfaces</title><author>Huang, Tom T ; Taylor, David G ; Sedlak, Miroslav ; Mosier, Nathan S ; Ladisch, Michael R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-f03c80745a7c04ebc39057b2ea07a2c1208d8ed0fecfaf346d27fd718c0a01e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Air</topic><topic>Analytical chemistry</topic><topic>Biosensors</topic><topic>Boundary layer</topic><topic>Chemistry</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Equipment Design</topic><topic>Escherichia coli O157 - cytology</topic><topic>Escherichia coli O157 - immunology</topic><topic>Escherichia coli O157 - isolation &amp; purification</topic><topic>Exact sciences and technology</topic><topic>Fluorescent Antibody Technique, Direct</topic><topic>General, instrumentation</topic><topic>Glass - chemistry</topic><topic>Green Fluorescent Proteins - analysis</topic><topic>Green Fluorescent Proteins - biosynthesis</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Microelectromechanical systems</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Pressure</topic><topic>Sensitivity and Specificity</topic><topic>Silicon - chemistry</topic><topic>Silicones - chemistry</topic><topic>Surface Properties</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Tom T</creatorcontrib><creatorcontrib>Taylor, David G</creatorcontrib><creatorcontrib>Sedlak, Miroslav</creatorcontrib><creatorcontrib>Mosier, Nathan S</creatorcontrib><creatorcontrib>Ladisch, Michael R</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Tom T</au><au>Taylor, David G</au><au>Sedlak, Miroslav</au><au>Mosier, Nathan S</au><au>Ladisch, Michael R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfiber-Directed Boundary Flow in Press-Fit Microdevices Fabricated from Self-Adhesive Hydrophobic Surfaces</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2005-06-01</date><risdate>2005</risdate><volume>77</volume><issue>11</issue><spage>3671</spage><epage>3675</epage><pages>3671-3675</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>We report a rapid microfluidic device construction technique which does not employ lithography or stamping methods. Device assembly physically combines a silicon wafer, an elastomer (poly(dimethylsiloxane) (PDMS)), and microfibers to form patterns of hydrophobic channels, wells, elbows, or orifices that direct fluid flow into controlled boundary layers. Tweezers are used to place glass microfibers in a defined pattern onto an elastomeric (PDMS) hydrophobic film. The film is then manually pressed onto a hydrophobic silicon wafer, causing it to adhere to the silicon wafer and form a liquid-tight seal around the fibers. Completed in 15 min, the technique results in an operable microdevice with micrometer-scale features of nanoliter volume. Microfiber-directed boundary flow is achieved by use of the surface wetting properties of the hydrophilic glass fiber and the hydrophobicity of surrounding surfaces. The simplicity of this technique allows quick prototyping of microfluidic components, as well as complete biosensor systems, such as we describe for the detection of pathogenic bacteria.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>15924403</pmid><doi>10.1021/ac048228i</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2005-06, Vol.77 (11), p.3671-3675
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_67879296
source MEDLINE; ACS Publications
subjects Air
Analytical chemistry
Biosensors
Boundary layer
Chemistry
Dimethylpolysiloxanes - chemistry
Equipment Design
Escherichia coli O157 - cytology
Escherichia coli O157 - immunology
Escherichia coli O157 - isolation & purification
Exact sciences and technology
Fluorescent Antibody Technique, Direct
General, instrumentation
Glass - chemistry
Green Fluorescent Proteins - analysis
Green Fluorescent Proteins - biosynthesis
Hydrophobic and Hydrophilic Interactions
Microelectromechanical systems
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Pressure
Sensitivity and Specificity
Silicon - chemistry
Silicones - chemistry
Surface Properties
Water - chemistry
title Microfiber-Directed Boundary Flow in Press-Fit Microdevices Fabricated from Self-Adhesive Hydrophobic Surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfiber-Directed%20Boundary%20Flow%20in%20Press-Fit%20Microdevices%20Fabricated%20from%20Self-Adhesive%20Hydrophobic%20Surfaces&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Huang,%20Tom%20T&rft.date=2005-06-01&rft.volume=77&rft.issue=11&rft.spage=3671&rft.epage=3675&rft.pages=3671-3675&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac048228i&rft_dat=%3Cproquest_cross%3E67879296%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217903583&rft_id=info:pmid/15924403&rfr_iscdi=true