Microfiber-Directed Boundary Flow in Press-Fit Microdevices Fabricated from Self-Adhesive Hydrophobic Surfaces
We report a rapid microfluidic device construction technique which does not employ lithography or stamping methods. Device assembly physically combines a silicon wafer, an elastomer (poly(dimethylsiloxane) (PDMS)), and microfibers to form patterns of hydrophobic channels, wells, elbows, or orifices...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2005-06, Vol.77 (11), p.3671-3675 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3675 |
---|---|
container_issue | 11 |
container_start_page | 3671 |
container_title | Analytical chemistry (Washington) |
container_volume | 77 |
creator | Huang, Tom T Taylor, David G Sedlak, Miroslav Mosier, Nathan S Ladisch, Michael R |
description | We report a rapid microfluidic device construction technique which does not employ lithography or stamping methods. Device assembly physically combines a silicon wafer, an elastomer (poly(dimethylsiloxane) (PDMS)), and microfibers to form patterns of hydrophobic channels, wells, elbows, or orifices that direct fluid flow into controlled boundary layers. Tweezers are used to place glass microfibers in a defined pattern onto an elastomeric (PDMS) hydrophobic film. The film is then manually pressed onto a hydrophobic silicon wafer, causing it to adhere to the silicon wafer and form a liquid-tight seal around the fibers. Completed in 15 min, the technique results in an operable microdevice with micrometer-scale features of nanoliter volume. Microfiber-directed boundary flow is achieved by use of the surface wetting properties of the hydrophilic glass fiber and the hydrophobicity of surrounding surfaces. The simplicity of this technique allows quick prototyping of microfluidic components, as well as complete biosensor systems, such as we describe for the detection of pathogenic bacteria. |
doi_str_mv | 10.1021/ac048228i |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67879296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67879296</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-f03c80745a7c04ebc39057b2ea07a2c1208d8ed0fecfaf346d27fd718c0a01e3</originalsourceid><addsrcrecordid>eNpl0c9rFDEUB_Agil2rB_8BGYQKHqa-JDOTzLG2bitssbiLSC8hk7zQ1NnJmsxU-9-buksX9JRDPu_L-0HIawrHFBj9oA1UkjHpn5AZrRmUjZTsKZkBAC-ZADggL1K6BaAUaPOcHNC6ZVUFfEaGS29icL7DWJ75iGZEW3wM02B1vC_mffhV-KG4iphSOfdj8ZdbvPMGUzHXXfRGP5S4GNbFEntXntgbTP4Oi4t7G8PmJnTeFMspOp1LXpJnTvcJX-3eQ7Kaf1qdXpSLL-efT08Wpa5AjqUDbiSIqtYij4ad4S3UomOoQWhmKANpJVpwaJx2vGosE84KKg1ooMgPybtt7CaGnxOmUa19Mtj3esAwJdUIKVrWNhm-_QfehikOuTXFqGiB15Jn9H6L8ugpRXRqE_0670dRUA8HUI8HyPbNLnDq1mj3crfxDI52QCejexf1YHzau0ZWnFORXbl1Po34-_Ffxx-5ey5qtbpaqvPF9fev13Spvu1ztUn7If5v8A-RsqkF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217903583</pqid></control><display><type>article</type><title>Microfiber-Directed Boundary Flow in Press-Fit Microdevices Fabricated from Self-Adhesive Hydrophobic Surfaces</title><source>MEDLINE</source><source>ACS Publications</source><creator>Huang, Tom T ; Taylor, David G ; Sedlak, Miroslav ; Mosier, Nathan S ; Ladisch, Michael R</creator><creatorcontrib>Huang, Tom T ; Taylor, David G ; Sedlak, Miroslav ; Mosier, Nathan S ; Ladisch, Michael R</creatorcontrib><description>We report a rapid microfluidic device construction technique which does not employ lithography or stamping methods. Device assembly physically combines a silicon wafer, an elastomer (poly(dimethylsiloxane) (PDMS)), and microfibers to form patterns of hydrophobic channels, wells, elbows, or orifices that direct fluid flow into controlled boundary layers. Tweezers are used to place glass microfibers in a defined pattern onto an elastomeric (PDMS) hydrophobic film. The film is then manually pressed onto a hydrophobic silicon wafer, causing it to adhere to the silicon wafer and form a liquid-tight seal around the fibers. Completed in 15 min, the technique results in an operable microdevice with micrometer-scale features of nanoliter volume. Microfiber-directed boundary flow is achieved by use of the surface wetting properties of the hydrophilic glass fiber and the hydrophobicity of surrounding surfaces. The simplicity of this technique allows quick prototyping of microfluidic components, as well as complete biosensor systems, such as we describe for the detection of pathogenic bacteria.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac048228i</identifier><identifier>PMID: 15924403</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Air ; Analytical chemistry ; Biosensors ; Boundary layer ; Chemistry ; Dimethylpolysiloxanes - chemistry ; Equipment Design ; Escherichia coli O157 - cytology ; Escherichia coli O157 - immunology ; Escherichia coli O157 - isolation & purification ; Exact sciences and technology ; Fluorescent Antibody Technique, Direct ; General, instrumentation ; Glass - chemistry ; Green Fluorescent Proteins - analysis ; Green Fluorescent Proteins - biosynthesis ; Hydrophobic and Hydrophilic Interactions ; Microelectromechanical systems ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Pressure ; Sensitivity and Specificity ; Silicon - chemistry ; Silicones - chemistry ; Surface Properties ; Water - chemistry</subject><ispartof>Analytical chemistry (Washington), 2005-06, Vol.77 (11), p.3671-3675</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2005 INIST-CNRS</rights><rights>Copyright American Chemical Society Jun 1, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-f03c80745a7c04ebc39057b2ea07a2c1208d8ed0fecfaf346d27fd718c0a01e3</citedby><cites>FETCH-LOGICAL-a408t-f03c80745a7c04ebc39057b2ea07a2c1208d8ed0fecfaf346d27fd718c0a01e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac048228i$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac048228i$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16843317$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15924403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Tom T</creatorcontrib><creatorcontrib>Taylor, David G</creatorcontrib><creatorcontrib>Sedlak, Miroslav</creatorcontrib><creatorcontrib>Mosier, Nathan S</creatorcontrib><creatorcontrib>Ladisch, Michael R</creatorcontrib><title>Microfiber-Directed Boundary Flow in Press-Fit Microdevices Fabricated from Self-Adhesive Hydrophobic Surfaces</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We report a rapid microfluidic device construction technique which does not employ lithography or stamping methods. Device assembly physically combines a silicon wafer, an elastomer (poly(dimethylsiloxane) (PDMS)), and microfibers to form patterns of hydrophobic channels, wells, elbows, or orifices that direct fluid flow into controlled boundary layers. Tweezers are used to place glass microfibers in a defined pattern onto an elastomeric (PDMS) hydrophobic film. The film is then manually pressed onto a hydrophobic silicon wafer, causing it to adhere to the silicon wafer and form a liquid-tight seal around the fibers. Completed in 15 min, the technique results in an operable microdevice with micrometer-scale features of nanoliter volume. Microfiber-directed boundary flow is achieved by use of the surface wetting properties of the hydrophilic glass fiber and the hydrophobicity of surrounding surfaces. The simplicity of this technique allows quick prototyping of microfluidic components, as well as complete biosensor systems, such as we describe for the detection of pathogenic bacteria.</description><subject>Air</subject><subject>Analytical chemistry</subject><subject>Biosensors</subject><subject>Boundary layer</subject><subject>Chemistry</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Equipment Design</subject><subject>Escherichia coli O157 - cytology</subject><subject>Escherichia coli O157 - immunology</subject><subject>Escherichia coli O157 - isolation & purification</subject><subject>Exact sciences and technology</subject><subject>Fluorescent Antibody Technique, Direct</subject><subject>General, instrumentation</subject><subject>Glass - chemistry</subject><subject>Green Fluorescent Proteins - analysis</subject><subject>Green Fluorescent Proteins - biosynthesis</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Microelectromechanical systems</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Pressure</subject><subject>Sensitivity and Specificity</subject><subject>Silicon - chemistry</subject><subject>Silicones - chemistry</subject><subject>Surface Properties</subject><subject>Water - chemistry</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0c9rFDEUB_Agil2rB_8BGYQKHqa-JDOTzLG2bitssbiLSC8hk7zQ1NnJmsxU-9-buksX9JRDPu_L-0HIawrHFBj9oA1UkjHpn5AZrRmUjZTsKZkBAC-ZADggL1K6BaAUaPOcHNC6ZVUFfEaGS29icL7DWJ75iGZEW3wM02B1vC_mffhV-KG4iphSOfdj8ZdbvPMGUzHXXfRGP5S4GNbFEntXntgbTP4Oi4t7G8PmJnTeFMspOp1LXpJnTvcJX-3eQ7Kaf1qdXpSLL-efT08Wpa5AjqUDbiSIqtYij4ad4S3UomOoQWhmKANpJVpwaJx2vGosE84KKg1ooMgPybtt7CaGnxOmUa19Mtj3esAwJdUIKVrWNhm-_QfehikOuTXFqGiB15Jn9H6L8ugpRXRqE_0670dRUA8HUI8HyPbNLnDq1mj3crfxDI52QCejexf1YHzau0ZWnFORXbl1Po34-_Ffxx-5ey5qtbpaqvPF9fev13Spvu1ztUn7If5v8A-RsqkF</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Huang, Tom T</creator><creator>Taylor, David G</creator><creator>Sedlak, Miroslav</creator><creator>Mosier, Nathan S</creator><creator>Ladisch, Michael R</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20050601</creationdate><title>Microfiber-Directed Boundary Flow in Press-Fit Microdevices Fabricated from Self-Adhesive Hydrophobic Surfaces</title><author>Huang, Tom T ; Taylor, David G ; Sedlak, Miroslav ; Mosier, Nathan S ; Ladisch, Michael R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-f03c80745a7c04ebc39057b2ea07a2c1208d8ed0fecfaf346d27fd718c0a01e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Air</topic><topic>Analytical chemistry</topic><topic>Biosensors</topic><topic>Boundary layer</topic><topic>Chemistry</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Equipment Design</topic><topic>Escherichia coli O157 - cytology</topic><topic>Escherichia coli O157 - immunology</topic><topic>Escherichia coli O157 - isolation & purification</topic><topic>Exact sciences and technology</topic><topic>Fluorescent Antibody Technique, Direct</topic><topic>General, instrumentation</topic><topic>Glass - chemistry</topic><topic>Green Fluorescent Proteins - analysis</topic><topic>Green Fluorescent Proteins - biosynthesis</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Microelectromechanical systems</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Pressure</topic><topic>Sensitivity and Specificity</topic><topic>Silicon - chemistry</topic><topic>Silicones - chemistry</topic><topic>Surface Properties</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Tom T</creatorcontrib><creatorcontrib>Taylor, David G</creatorcontrib><creatorcontrib>Sedlak, Miroslav</creatorcontrib><creatorcontrib>Mosier, Nathan S</creatorcontrib><creatorcontrib>Ladisch, Michael R</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Tom T</au><au>Taylor, David G</au><au>Sedlak, Miroslav</au><au>Mosier, Nathan S</au><au>Ladisch, Michael R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfiber-Directed Boundary Flow in Press-Fit Microdevices Fabricated from Self-Adhesive Hydrophobic Surfaces</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2005-06-01</date><risdate>2005</risdate><volume>77</volume><issue>11</issue><spage>3671</spage><epage>3675</epage><pages>3671-3675</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>We report a rapid microfluidic device construction technique which does not employ lithography or stamping methods. Device assembly physically combines a silicon wafer, an elastomer (poly(dimethylsiloxane) (PDMS)), and microfibers to form patterns of hydrophobic channels, wells, elbows, or orifices that direct fluid flow into controlled boundary layers. Tweezers are used to place glass microfibers in a defined pattern onto an elastomeric (PDMS) hydrophobic film. The film is then manually pressed onto a hydrophobic silicon wafer, causing it to adhere to the silicon wafer and form a liquid-tight seal around the fibers. Completed in 15 min, the technique results in an operable microdevice with micrometer-scale features of nanoliter volume. Microfiber-directed boundary flow is achieved by use of the surface wetting properties of the hydrophilic glass fiber and the hydrophobicity of surrounding surfaces. The simplicity of this technique allows quick prototyping of microfluidic components, as well as complete biosensor systems, such as we describe for the detection of pathogenic bacteria.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>15924403</pmid><doi>10.1021/ac048228i</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2005-06, Vol.77 (11), p.3671-3675 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_67879296 |
source | MEDLINE; ACS Publications |
subjects | Air Analytical chemistry Biosensors Boundary layer Chemistry Dimethylpolysiloxanes - chemistry Equipment Design Escherichia coli O157 - cytology Escherichia coli O157 - immunology Escherichia coli O157 - isolation & purification Exact sciences and technology Fluorescent Antibody Technique, Direct General, instrumentation Glass - chemistry Green Fluorescent Proteins - analysis Green Fluorescent Proteins - biosynthesis Hydrophobic and Hydrophilic Interactions Microelectromechanical systems Microfluidic Analytical Techniques - instrumentation Microfluidic Analytical Techniques - methods Pressure Sensitivity and Specificity Silicon - chemistry Silicones - chemistry Surface Properties Water - chemistry |
title | Microfiber-Directed Boundary Flow in Press-Fit Microdevices Fabricated from Self-Adhesive Hydrophobic Surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfiber-Directed%20Boundary%20Flow%20in%20Press-Fit%20Microdevices%20Fabricated%20from%20Self-Adhesive%20Hydrophobic%20Surfaces&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Huang,%20Tom%20T&rft.date=2005-06-01&rft.volume=77&rft.issue=11&rft.spage=3671&rft.epage=3675&rft.pages=3671-3675&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac048228i&rft_dat=%3Cproquest_cross%3E67879296%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217903583&rft_id=info:pmid/15924403&rfr_iscdi=true |