A systematic comparison and evaluation of biclustering methods for gene expression data
Motivation: In recent years, there have been various efforts to overcome the limitations of standard clustering approaches for the analysis of gene expression data by grouping genes and samples simultaneously. The underlying concept, which is often referred to as biclustering, allows to identify set...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2006-05, Vol.22 (9), p.1122-1129 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1129 |
---|---|
container_issue | 9 |
container_start_page | 1122 |
container_title | Bioinformatics |
container_volume | 22 |
creator | Prelić, Amela Bleuler, Stefan Zimmermann, Philip Wille, Anja Bühlmann, Peter Gruissem, Wilhelm Hennig, Lars Thiele, Lothar Zitzler, Eckart |
description | Motivation: In recent years, there have been various efforts to overcome the limitations of standard clustering approaches for the analysis of gene expression data by grouping genes and samples simultaneously. The underlying concept, which is often referred to as biclustering, allows to identify sets of genes sharing compatible expression patterns across subsets of samples, and its usefulness has been demonstrated for different organisms and datasets. Several biclustering methods have been proposed in the literature; however, it is not clear how the different techniques compare with each other with respect to the biological relevance of the clusters as well as with other characteristics such as robustness and sensitivity to noise. Accordingly, no guidelines concerning the choice of the biclustering method are currently available. Results: First, this paper provides a methodology for comparing and validating biclustering methods that includes a simple binary reference model. Although this model captures the essential features of most biclustering approaches, it is still simple enough to exactly determine all optimal groupings; to this end, we propose a fast divide-and-conquer algorithm (Bimax). Second, we evaluate the performance of five salient biclustering algorithms together with the reference model and a hierarchical clustering method on various synthetic and real datasets for Saccharomyces cerevisiae and Arabidopsis thaliana. The comparison reveals that (1) biclustering in general has advantages over a conventional hierarchical clustering approach, (2) there are considerable performance differences between the tested methods and (3) already the simple reference model delivers relevant patterns within all considered settings. Availability: The datasets used, the outcomes of the biclustering algorithms and the Bimax implementation for the reference model are available at Contact:bleuler@tik.ee.ethz.ch Supplementary information: Supplementary data are available at |
doi_str_mv | 10.1093/bioinformatics/btl060 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67874331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19993805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-93fdca142c170d8adbfbccf541babe3ce6ba5f047e3dd0d48162c93a8ef5c633</originalsourceid><addsrcrecordid>eNqFkV1LHDEUhkNpqR_tT7CEgt5NTTYfM7lU0VoQCrLQ0ptw8qWxM5NtMiP67826S8Xe9CoJ5zlvzuFB6ICSL5QodmxiimNIeYAp2nJspp5I8gbtUi5JsyBCva13JtuGd4TtoL1S7ggRlHP-Hu1QKQhRnO6iHye4PJbJP8dgm4YV5FjSiGF02N9DP9dCfaaATbT9XNEcxxs8-Ok2uYLrBPjGjx77h1X2paxZBxN8QO8C9MV_3J77aHlxvjy7bK6-f_12dnLVWMHl1CgWnAXKF5a2xHXgTDDWBsGpAeOZ9dKACIS3njlHHO-oXFjFoPNBWMnYPjraxK5y-jP7MukhFuv7Hkaf5qJl27WcMfpfkCqlWEdEBT__A96lOY91h8p0UhL-_K3YQDanUrIPepXjAPlRU6LXevRrPXqjp_Z92obPZvDupWvrowKHWwCKhT5kGG0sL1zbyk6p9ZTNhotVyMPfOuTfdWXWCn3585eurLi-Pl3qBXsCe9ivDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198660463</pqid></control><display><type>article</type><title>A systematic comparison and evaluation of biclustering methods for gene expression data</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>Alma/SFX Local Collection</source><creator>Prelić, Amela ; Bleuler, Stefan ; Zimmermann, Philip ; Wille, Anja ; Bühlmann, Peter ; Gruissem, Wilhelm ; Hennig, Lars ; Thiele, Lothar ; Zitzler, Eckart</creator><creatorcontrib>Prelić, Amela ; Bleuler, Stefan ; Zimmermann, Philip ; Wille, Anja ; Bühlmann, Peter ; Gruissem, Wilhelm ; Hennig, Lars ; Thiele, Lothar ; Zitzler, Eckart</creatorcontrib><description>Motivation: In recent years, there have been various efforts to overcome the limitations of standard clustering approaches for the analysis of gene expression data by grouping genes and samples simultaneously. The underlying concept, which is often referred to as biclustering, allows to identify sets of genes sharing compatible expression patterns across subsets of samples, and its usefulness has been demonstrated for different organisms and datasets. Several biclustering methods have been proposed in the literature; however, it is not clear how the different techniques compare with each other with respect to the biological relevance of the clusters as well as with other characteristics such as robustness and sensitivity to noise. Accordingly, no guidelines concerning the choice of the biclustering method are currently available. Results: First, this paper provides a methodology for comparing and validating biclustering methods that includes a simple binary reference model. Although this model captures the essential features of most biclustering approaches, it is still simple enough to exactly determine all optimal groupings; to this end, we propose a fast divide-and-conquer algorithm (Bimax). Second, we evaluate the performance of five salient biclustering algorithms together with the reference model and a hierarchical clustering method on various synthetic and real datasets for Saccharomyces cerevisiae and Arabidopsis thaliana. The comparison reveals that (1) biclustering in general has advantages over a conventional hierarchical clustering approach, (2) there are considerable performance differences between the tested methods and (3) already the simple reference model delivers relevant patterns within all considered settings. Availability: The datasets used, the outcomes of the biclustering algorithms and the Bimax implementation for the reference model are available at Contact:bleuler@tik.ee.ethz.ch Supplementary information: Supplementary data are available at</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btl060</identifier><identifier>PMID: 16500941</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Arabidopsis thaliana ; Artificial Intelligence ; Biological and medical sciences ; Cluster Analysis ; Databases, Genetic ; Fundamental and applied biological sciences. Psychology ; Gene Expression - physiology ; Gene Expression Profiling - methods ; General aspects ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Oligonucleotide Array Sequence Analysis - methods ; Pattern Recognition, Automated - methods ; Saccharomyces cerevisiae</subject><ispartof>Bioinformatics, 2006-05, Vol.22 (9), p.1122-1129</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) May 1, 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-93fdca142c170d8adbfbccf541babe3ce6ba5f047e3dd0d48162c93a8ef5c633</citedby><cites>FETCH-LOGICAL-c546t-93fdca142c170d8adbfbccf541babe3ce6ba5f047e3dd0d48162c93a8ef5c633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17768995$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16500941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prelić, Amela</creatorcontrib><creatorcontrib>Bleuler, Stefan</creatorcontrib><creatorcontrib>Zimmermann, Philip</creatorcontrib><creatorcontrib>Wille, Anja</creatorcontrib><creatorcontrib>Bühlmann, Peter</creatorcontrib><creatorcontrib>Gruissem, Wilhelm</creatorcontrib><creatorcontrib>Hennig, Lars</creatorcontrib><creatorcontrib>Thiele, Lothar</creatorcontrib><creatorcontrib>Zitzler, Eckart</creatorcontrib><title>A systematic comparison and evaluation of biclustering methods for gene expression data</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: In recent years, there have been various efforts to overcome the limitations of standard clustering approaches for the analysis of gene expression data by grouping genes and samples simultaneously. The underlying concept, which is often referred to as biclustering, allows to identify sets of genes sharing compatible expression patterns across subsets of samples, and its usefulness has been demonstrated for different organisms and datasets. Several biclustering methods have been proposed in the literature; however, it is not clear how the different techniques compare with each other with respect to the biological relevance of the clusters as well as with other characteristics such as robustness and sensitivity to noise. Accordingly, no guidelines concerning the choice of the biclustering method are currently available. Results: First, this paper provides a methodology for comparing and validating biclustering methods that includes a simple binary reference model. Although this model captures the essential features of most biclustering approaches, it is still simple enough to exactly determine all optimal groupings; to this end, we propose a fast divide-and-conquer algorithm (Bimax). Second, we evaluate the performance of five salient biclustering algorithms together with the reference model and a hierarchical clustering method on various synthetic and real datasets for Saccharomyces cerevisiae and Arabidopsis thaliana. The comparison reveals that (1) biclustering in general has advantages over a conventional hierarchical clustering approach, (2) there are considerable performance differences between the tested methods and (3) already the simple reference model delivers relevant patterns within all considered settings. Availability: The datasets used, the outcomes of the biclustering algorithms and the Bimax implementation for the reference model are available at Contact:bleuler@tik.ee.ethz.ch Supplementary information: Supplementary data are available at</description><subject>Algorithms</subject><subject>Arabidopsis thaliana</subject><subject>Artificial Intelligence</subject><subject>Biological and medical sciences</subject><subject>Cluster Analysis</subject><subject>Databases, Genetic</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression - physiology</subject><subject>Gene Expression Profiling - methods</subject><subject>General aspects</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Saccharomyces cerevisiae</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1LHDEUhkNpqR_tT7CEgt5NTTYfM7lU0VoQCrLQ0ptw8qWxM5NtMiP67826S8Xe9CoJ5zlvzuFB6ICSL5QodmxiimNIeYAp2nJspp5I8gbtUi5JsyBCva13JtuGd4TtoL1S7ggRlHP-Hu1QKQhRnO6iHye4PJbJP8dgm4YV5FjSiGF02N9DP9dCfaaATbT9XNEcxxs8-Ok2uYLrBPjGjx77h1X2paxZBxN8QO8C9MV_3J77aHlxvjy7bK6-f_12dnLVWMHl1CgWnAXKF5a2xHXgTDDWBsGpAeOZ9dKACIS3njlHHO-oXFjFoPNBWMnYPjraxK5y-jP7MukhFuv7Hkaf5qJl27WcMfpfkCqlWEdEBT__A96lOY91h8p0UhL-_K3YQDanUrIPepXjAPlRU6LXevRrPXqjp_Z92obPZvDupWvrowKHWwCKhT5kGG0sL1zbyk6p9ZTNhotVyMPfOuTfdWXWCn3585eurLi-Pl3qBXsCe9ivDw</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Prelić, Amela</creator><creator>Bleuler, Stefan</creator><creator>Zimmermann, Philip</creator><creator>Wille, Anja</creator><creator>Bühlmann, Peter</creator><creator>Gruissem, Wilhelm</creator><creator>Hennig, Lars</creator><creator>Thiele, Lothar</creator><creator>Zitzler, Eckart</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>M7N</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060501</creationdate><title>A systematic comparison and evaluation of biclustering methods for gene expression data</title><author>Prelić, Amela ; Bleuler, Stefan ; Zimmermann, Philip ; Wille, Anja ; Bühlmann, Peter ; Gruissem, Wilhelm ; Hennig, Lars ; Thiele, Lothar ; Zitzler, Eckart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-93fdca142c170d8adbfbccf541babe3ce6ba5f047e3dd0d48162c93a8ef5c633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Arabidopsis thaliana</topic><topic>Artificial Intelligence</topic><topic>Biological and medical sciences</topic><topic>Cluster Analysis</topic><topic>Databases, Genetic</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression - physiology</topic><topic>Gene Expression Profiling - methods</topic><topic>General aspects</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Saccharomyces cerevisiae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prelić, Amela</creatorcontrib><creatorcontrib>Bleuler, Stefan</creatorcontrib><creatorcontrib>Zimmermann, Philip</creatorcontrib><creatorcontrib>Wille, Anja</creatorcontrib><creatorcontrib>Bühlmann, Peter</creatorcontrib><creatorcontrib>Gruissem, Wilhelm</creatorcontrib><creatorcontrib>Hennig, Lars</creatorcontrib><creatorcontrib>Thiele, Lothar</creatorcontrib><creatorcontrib>Zitzler, Eckart</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prelić, Amela</au><au>Bleuler, Stefan</au><au>Zimmermann, Philip</au><au>Wille, Anja</au><au>Bühlmann, Peter</au><au>Gruissem, Wilhelm</au><au>Hennig, Lars</au><au>Thiele, Lothar</au><au>Zitzler, Eckart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A systematic comparison and evaluation of biclustering methods for gene expression data</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2006-05-01</date><risdate>2006</risdate><volume>22</volume><issue>9</issue><spage>1122</spage><epage>1129</epage><pages>1122-1129</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: In recent years, there have been various efforts to overcome the limitations of standard clustering approaches for the analysis of gene expression data by grouping genes and samples simultaneously. The underlying concept, which is often referred to as biclustering, allows to identify sets of genes sharing compatible expression patterns across subsets of samples, and its usefulness has been demonstrated for different organisms and datasets. Several biclustering methods have been proposed in the literature; however, it is not clear how the different techniques compare with each other with respect to the biological relevance of the clusters as well as with other characteristics such as robustness and sensitivity to noise. Accordingly, no guidelines concerning the choice of the biclustering method are currently available. Results: First, this paper provides a methodology for comparing and validating biclustering methods that includes a simple binary reference model. Although this model captures the essential features of most biclustering approaches, it is still simple enough to exactly determine all optimal groupings; to this end, we propose a fast divide-and-conquer algorithm (Bimax). Second, we evaluate the performance of five salient biclustering algorithms together with the reference model and a hierarchical clustering method on various synthetic and real datasets for Saccharomyces cerevisiae and Arabidopsis thaliana. The comparison reveals that (1) biclustering in general has advantages over a conventional hierarchical clustering approach, (2) there are considerable performance differences between the tested methods and (3) already the simple reference model delivers relevant patterns within all considered settings. Availability: The datasets used, the outcomes of the biclustering algorithms and the Bimax implementation for the reference model are available at Contact:bleuler@tik.ee.ethz.ch Supplementary information: Supplementary data are available at</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>16500941</pmid><doi>10.1093/bioinformatics/btl060</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2006-05, Vol.22 (9), p.1122-1129 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_67874331 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; Alma/SFX Local Collection |
subjects | Algorithms Arabidopsis thaliana Artificial Intelligence Biological and medical sciences Cluster Analysis Databases, Genetic Fundamental and applied biological sciences. Psychology Gene Expression - physiology Gene Expression Profiling - methods General aspects Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Oligonucleotide Array Sequence Analysis - methods Pattern Recognition, Automated - methods Saccharomyces cerevisiae |
title | A systematic comparison and evaluation of biclustering methods for gene expression data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20systematic%20comparison%20and%20evaluation%20of%20biclustering%20methods%20for%20gene%20expression%20data&rft.jtitle=Bioinformatics&rft.au=Preli%C4%87,%20Amela&rft.date=2006-05-01&rft.volume=22&rft.issue=9&rft.spage=1122&rft.epage=1129&rft.pages=1122-1129&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/btl060&rft_dat=%3Cproquest_cross%3E19993805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198660463&rft_id=info:pmid/16500941&rfr_iscdi=true |