Modularized learning of genetic interaction networks from biological annotations and mRNA expression data
Motivation: Inferring the genetic interaction mechanism using Bayesian networks has recently drawn increasing attention due to its well-established theoretical foundation and statistical robustness. However, the relative insufficiency of experiments with respect to the number of genes leads to many...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2005-06, Vol.21 (11), p.2739-2747 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2747 |
---|---|
container_issue | 11 |
container_start_page | 2739 |
container_title | Bioinformatics |
container_volume | 21 |
creator | Lee, Phil Hyoun Lee, Doheon |
description | Motivation: Inferring the genetic interaction mechanism using Bayesian networks has recently drawn increasing attention due to its well-established theoretical foundation and statistical robustness. However, the relative insufficiency of experiments with respect to the number of genes leads to many false positive inferences. Results: We propose a novel method to infer genetic networks by alleviating the shortage of available mRNA expression data with prior knowledge. We call the proposed method ‘modularized network learning’ (MONET). Firstly, the proposed method divides a whole gene set to overlapped modules considering biological annotations and expression data together. Secondly, it infers a Bayesian network for each module, and integrates the learned subnetworks to a global network. An algorithm that measures a similarity between genes based on hierarchy, specificity and multiplicity of biological annotations is presented. The proposed method draws a global picture of inter-module relationships as well as a detailed look of intra-module interactions. We applied the proposed method to analyze Saccharomyces cerevisiae stress data, and found several hypotheses to suggest putative functions of unclassified genes. We also compared the proposed method with a whole-set-based approach and two expression-based clustering approaches. Availability: JAVA programs for the MONET framework are available from the corresponding author upon request. Web supplementary data is accessible at http://biosoft.kaist.ac.kr/~dhlee/monet/index.html Contact: doheon@kaist.ac.kr |
doi_str_mv | 10.1093/bioinformatics/bti406 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67866150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>857797041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-ae883245bc45158af43cd85fcc26b10af12c9035fa243aad76e549d11764f0073</originalsourceid><addsrcrecordid>eNqFkV9rFTEQxRdRbK1-BCUI9W1tsvm3eSzFWqFWEJXSlzCbTS5pd5NrkqWtn95c7sViX_qUIfM7h5k5TfOW4I8EK3o0-OiDi2mG4k0-GopnWDxr9gkTuO0wV89rTYVsWY_pXvMq52uMOWGMvWz2CJdKKqz2G_81jssEyf-xI5ospODDCkWHVjbY6ox8KDaBKT4GVH9uY7rJyKU4ozrBFFfewIQghFhgw-Raj2j-fnGM7N062Zw3whEKvG5eOJiyfbN7D5qfp59-nJy1598-fzk5Pm9NnbS0YPuedowPhnHCe3CMmrHnzphODASDI51RmHIHHaMAoxSWMzUSIgVzGEt60HzY-q5T_L3YXPTss7HTBMHGJWsheyEIx0-CRNYrKcYq-P4ReB2XFOoSmqheSFL9KsS3kEkx52SdXic_Q7rXBOtNYvr_xPQ2sap7tzNfhtmOD6pdRBU43AGQ661dgmB8fuCEEpgQXrl2y_lc7N2_PqSbujKVXJ9dXml1cdVLzn_pS_oXwuW0sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198671661</pqid></control><display><type>article</type><title>Modularized learning of genetic interaction networks from biological annotations and mRNA expression data</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Lee, Phil Hyoun ; Lee, Doheon</creator><creatorcontrib>Lee, Phil Hyoun ; Lee, Doheon</creatorcontrib><description>Motivation: Inferring the genetic interaction mechanism using Bayesian networks has recently drawn increasing attention due to its well-established theoretical foundation and statistical robustness. However, the relative insufficiency of experiments with respect to the number of genes leads to many false positive inferences. Results: We propose a novel method to infer genetic networks by alleviating the shortage of available mRNA expression data with prior knowledge. We call the proposed method ‘modularized network learning’ (MONET). Firstly, the proposed method divides a whole gene set to overlapped modules considering biological annotations and expression data together. Secondly, it infers a Bayesian network for each module, and integrates the learned subnetworks to a global network. An algorithm that measures a similarity between genes based on hierarchy, specificity and multiplicity of biological annotations is presented. The proposed method draws a global picture of inter-module relationships as well as a detailed look of intra-module interactions. We applied the proposed method to analyze Saccharomyces cerevisiae stress data, and found several hypotheses to suggest putative functions of unclassified genes. We also compared the proposed method with a whole-set-based approach and two expression-based clustering approaches. Availability: JAVA programs for the MONET framework are available from the corresponding author upon request. Web supplementary data is accessible at http://biosoft.kaist.ac.kr/~dhlee/monet/index.html Contact: doheon@kaist.ac.kr</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/bti406</identifier><identifier>PMID: 15797909</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Artificial Intelligence ; Biological and medical sciences ; Computer Simulation ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling - methods ; Gene Expression Regulation - physiology ; General aspects ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Models, Genetic ; Oligonucleotide Array Sequence Analysis - methods ; Oxidative Stress - physiology ; Protein Interaction Mapping - methods ; RNA, Messenger - genetics ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - physiology ; Saccharomyces cerevisiae Proteins - metabolism ; Sequence Analysis, RNA - methods ; Signal Transduction - physiology</subject><ispartof>Bioinformatics, 2005-06, Vol.21 (11), p.2739-2747</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Jun 1, 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-ae883245bc45158af43cd85fcc26b10af12c9035fa243aad76e549d11764f0073</citedby><cites>FETCH-LOGICAL-c480t-ae883245bc45158af43cd85fcc26b10af12c9035fa243aad76e549d11764f0073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16960115$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15797909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Phil Hyoun</creatorcontrib><creatorcontrib>Lee, Doheon</creatorcontrib><title>Modularized learning of genetic interaction networks from biological annotations and mRNA expression data</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Inferring the genetic interaction mechanism using Bayesian networks has recently drawn increasing attention due to its well-established theoretical foundation and statistical robustness. However, the relative insufficiency of experiments with respect to the number of genes leads to many false positive inferences. Results: We propose a novel method to infer genetic networks by alleviating the shortage of available mRNA expression data with prior knowledge. We call the proposed method ‘modularized network learning’ (MONET). Firstly, the proposed method divides a whole gene set to overlapped modules considering biological annotations and expression data together. Secondly, it infers a Bayesian network for each module, and integrates the learned subnetworks to a global network. An algorithm that measures a similarity between genes based on hierarchy, specificity and multiplicity of biological annotations is presented. The proposed method draws a global picture of inter-module relationships as well as a detailed look of intra-module interactions. We applied the proposed method to analyze Saccharomyces cerevisiae stress data, and found several hypotheses to suggest putative functions of unclassified genes. We also compared the proposed method with a whole-set-based approach and two expression-based clustering approaches. Availability: JAVA programs for the MONET framework are available from the corresponding author upon request. Web supplementary data is accessible at http://biosoft.kaist.ac.kr/~dhlee/monet/index.html Contact: doheon@kaist.ac.kr</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation - physiology</subject><subject>General aspects</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Models, Genetic</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Oxidative Stress - physiology</subject><subject>Protein Interaction Mapping - methods</subject><subject>RNA, Messenger - genetics</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - physiology</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Signal Transduction - physiology</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV9rFTEQxRdRbK1-BCUI9W1tsvm3eSzFWqFWEJXSlzCbTS5pd5NrkqWtn95c7sViX_qUIfM7h5k5TfOW4I8EK3o0-OiDi2mG4k0-GopnWDxr9gkTuO0wV89rTYVsWY_pXvMq52uMOWGMvWz2CJdKKqz2G_81jssEyf-xI5ospODDCkWHVjbY6ox8KDaBKT4GVH9uY7rJyKU4ozrBFFfewIQghFhgw-Raj2j-fnGM7N062Zw3whEKvG5eOJiyfbN7D5qfp59-nJy1598-fzk5Pm9NnbS0YPuedowPhnHCe3CMmrHnzphODASDI51RmHIHHaMAoxSWMzUSIgVzGEt60HzY-q5T_L3YXPTss7HTBMHGJWsheyEIx0-CRNYrKcYq-P4ReB2XFOoSmqheSFL9KsS3kEkx52SdXic_Q7rXBOtNYvr_xPQ2sap7tzNfhtmOD6pdRBU43AGQ661dgmB8fuCEEpgQXrl2y_lc7N2_PqSbujKVXJ9dXml1cdVLzn_pS_oXwuW0sw</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Lee, Phil Hyoun</creator><creator>Lee, Doheon</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20050601</creationdate><title>Modularized learning of genetic interaction networks from biological annotations and mRNA expression data</title><author>Lee, Phil Hyoun ; Lee, Doheon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-ae883245bc45158af43cd85fcc26b10af12c9035fa243aad76e549d11764f0073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation - physiology</topic><topic>General aspects</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Models, Genetic</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Oxidative Stress - physiology</topic><topic>Protein Interaction Mapping - methods</topic><topic>RNA, Messenger - genetics</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - physiology</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Phil Hyoun</creatorcontrib><creatorcontrib>Lee, Doheon</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Phil Hyoun</au><au>Lee, Doheon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modularized learning of genetic interaction networks from biological annotations and mRNA expression data</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2005-06-01</date><risdate>2005</risdate><volume>21</volume><issue>11</issue><spage>2739</spage><epage>2747</epage><pages>2739-2747</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: Inferring the genetic interaction mechanism using Bayesian networks has recently drawn increasing attention due to its well-established theoretical foundation and statistical robustness. However, the relative insufficiency of experiments with respect to the number of genes leads to many false positive inferences. Results: We propose a novel method to infer genetic networks by alleviating the shortage of available mRNA expression data with prior knowledge. We call the proposed method ‘modularized network learning’ (MONET). Firstly, the proposed method divides a whole gene set to overlapped modules considering biological annotations and expression data together. Secondly, it infers a Bayesian network for each module, and integrates the learned subnetworks to a global network. An algorithm that measures a similarity between genes based on hierarchy, specificity and multiplicity of biological annotations is presented. The proposed method draws a global picture of inter-module relationships as well as a detailed look of intra-module interactions. We applied the proposed method to analyze Saccharomyces cerevisiae stress data, and found several hypotheses to suggest putative functions of unclassified genes. We also compared the proposed method with a whole-set-based approach and two expression-based clustering approaches. Availability: JAVA programs for the MONET framework are available from the corresponding author upon request. Web supplementary data is accessible at http://biosoft.kaist.ac.kr/~dhlee/monet/index.html Contact: doheon@kaist.ac.kr</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>15797909</pmid><doi>10.1093/bioinformatics/bti406</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2005-06, Vol.21 (11), p.2739-2747 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_67866150 |
source | MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Algorithms Artificial Intelligence Biological and medical sciences Computer Simulation Fundamental and applied biological sciences. Psychology Gene Expression Profiling - methods Gene Expression Regulation - physiology General aspects Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Models, Genetic Oligonucleotide Array Sequence Analysis - methods Oxidative Stress - physiology Protein Interaction Mapping - methods RNA, Messenger - genetics Saccharomyces cerevisiae Saccharomyces cerevisiae - physiology Saccharomyces cerevisiae Proteins - metabolism Sequence Analysis, RNA - methods Signal Transduction - physiology |
title | Modularized learning of genetic interaction networks from biological annotations and mRNA expression data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modularized%20learning%20of%20genetic%20interaction%20networks%20from%20biological%20annotations%20and%20mRNA%20expression%20data&rft.jtitle=Bioinformatics&rft.au=Lee,%20Phil%20Hyoun&rft.date=2005-06-01&rft.volume=21&rft.issue=11&rft.spage=2739&rft.epage=2747&rft.pages=2739-2747&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/bti406&rft_dat=%3Cproquest_cross%3E857797041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198671661&rft_id=info:pmid/15797909&rfr_iscdi=true |