Invariant Chain Transmembrane Domain Trimerization:  A Step in MHC Class II Assembly

The transmembrane (TM) domain of the major histocompatibility complex (MHC) class II-associated invariant chain (Ii) has long been implicated in both correct folding and function of the MHC class II complex. To function correctly, Ii must form a trimer, and the TM domain is one of the domains though...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2006-04, Vol.45 (16), p.5228-5234
Hauptverfasser: Dixon, Ann M, Stanley, Bradford J, Matthews, Erin E, Dawson, Jessica P, Engelman, Donald M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5234
container_issue 16
container_start_page 5228
container_title Biochemistry (Easton)
container_volume 45
creator Dixon, Ann M
Stanley, Bradford J
Matthews, Erin E
Dawson, Jessica P
Engelman, Donald M
description The transmembrane (TM) domain of the major histocompatibility complex (MHC) class II-associated invariant chain (Ii) has long been implicated in both correct folding and function of the MHC class II complex. To function correctly, Ii must form a trimer, and the TM domain is one of the domains thought to stabilize the trimeric state. Specific mutations in the TM domain have been shown previously to disrupt MHC class II functions such as mature complex formation and antigen presentation, possibly due to disruption of Ii TM helix−helix interactions. Although this hypothesis has been reported several times in the literature, thus far no experimental measurements have been made to explore the relationship between TM domain structure and TM mutations that affect Ii function. We have applied biophysical and computational methods to study the folding and assembly of the Ii TM domain in isolation and find that the TM domain strongly self-associates. According to analytical ultracentrifugation analyses, the primary oligomeric state for this TM domain is a strongly associated trimer with a dissociation constant of approximately 120 nM in DPC micelles. We have also examined the effect of functionally important mutations of glutamine and threonine residues in the TM domain on its structure, providing results that now link the disruption of TM helix interactions to previously reported losses of Ii function.
doi_str_mv 10.1021/bi052112e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67862249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67862249</sourcerecordid><originalsourceid>FETCH-LOGICAL-a382t-96aa5fdc5ef7589bf581e77ce1fb0844a4a5fdfe05841dd9c401796cefd3f6263</originalsourceid><addsrcrecordid>eNqFkMtO3DAUhq2qqAzTLngB5E2RWAR8HNuJuxuFwow0iLYzRRUby0lsEchlamcQsGLLa_IkGGUEm0pdHZ3zf-f2I7QL5BAIhaO8IpwCUPMBjYBTEjEp-Uc0IoSIiEpBttGO99chZSRhn9A2CAEpAIzQxay91a7SbY-zK121eOl06xvT5CEafNw1Q7FqjKsedF917bfnxyc8wYverHDQzqYZzmrtPZ7N8MT70Frff0ZbVtfefNnEMfp98n2ZTaP5-eksm8wjHae0j6TQmtuy4MYmPJW55SmYJCkM2JykjGn2KltDeMqgLGXBCCRSFMaWsRVUxGO0P8xdue7v2vheNZUvTF2H47u1VyJJBaVM_hcEGUuWxnEADwawcJ33zli1Cs9rd6-AqFe31Zvbgd3bDF3njSnfyY29AYgGoPK9uXvTtbsJl8UJV8sfC_Xzcvrr4pj9UYvAfx14XXh13a1dG8z7x-IXtQGVXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19394833</pqid></control><display><type>article</type><title>Invariant Chain Transmembrane Domain Trimerization:  A Step in MHC Class II Assembly</title><source>MEDLINE</source><source>American Chemical Society Publications</source><creator>Dixon, Ann M ; Stanley, Bradford J ; Matthews, Erin E ; Dawson, Jessica P ; Engelman, Donald M</creator><creatorcontrib>Dixon, Ann M ; Stanley, Bradford J ; Matthews, Erin E ; Dawson, Jessica P ; Engelman, Donald M</creatorcontrib><description>The transmembrane (TM) domain of the major histocompatibility complex (MHC) class II-associated invariant chain (Ii) has long been implicated in both correct folding and function of the MHC class II complex. To function correctly, Ii must form a trimer, and the TM domain is one of the domains thought to stabilize the trimeric state. Specific mutations in the TM domain have been shown previously to disrupt MHC class II functions such as mature complex formation and antigen presentation, possibly due to disruption of Ii TM helix−helix interactions. Although this hypothesis has been reported several times in the literature, thus far no experimental measurements have been made to explore the relationship between TM domain structure and TM mutations that affect Ii function. We have applied biophysical and computational methods to study the folding and assembly of the Ii TM domain in isolation and find that the TM domain strongly self-associates. According to analytical ultracentrifugation analyses, the primary oligomeric state for this TM domain is a strongly associated trimer with a dissociation constant of approximately 120 nM in DPC micelles. We have also examined the effect of functionally important mutations of glutamine and threonine residues in the TM domain on its structure, providing results that now link the disruption of TM helix interactions to previously reported losses of Ii function.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi052112e</identifier><identifier>PMID: 16618111</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Animals ; Antigens, Differentiation, B-Lymphocyte - chemistry ; Antigens, Differentiation, B-Lymphocyte - genetics ; Antigens, Differentiation, B-Lymphocyte - metabolism ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Detergents - pharmacology ; Histocompatibility Antigens Class II - biosynthesis ; Histocompatibility Antigens Class II - chemistry ; Histocompatibility Antigens Class II - genetics ; Histocompatibility Antigens Class II - metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Mutation - genetics ; Protein Binding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sequence Alignment ; Sequence Homology, Amino Acid</subject><ispartof>Biochemistry (Easton), 2006-04, Vol.45 (16), p.5228-5234</ispartof><rights>Copyright © 2006 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a382t-96aa5fdc5ef7589bf581e77ce1fb0844a4a5fdfe05841dd9c401796cefd3f6263</citedby><cites>FETCH-LOGICAL-a382t-96aa5fdc5ef7589bf581e77ce1fb0844a4a5fdfe05841dd9c401796cefd3f6263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi052112e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi052112e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16618111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dixon, Ann M</creatorcontrib><creatorcontrib>Stanley, Bradford J</creatorcontrib><creatorcontrib>Matthews, Erin E</creatorcontrib><creatorcontrib>Dawson, Jessica P</creatorcontrib><creatorcontrib>Engelman, Donald M</creatorcontrib><title>Invariant Chain Transmembrane Domain Trimerization:  A Step in MHC Class II Assembly</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>The transmembrane (TM) domain of the major histocompatibility complex (MHC) class II-associated invariant chain (Ii) has long been implicated in both correct folding and function of the MHC class II complex. To function correctly, Ii must form a trimer, and the TM domain is one of the domains thought to stabilize the trimeric state. Specific mutations in the TM domain have been shown previously to disrupt MHC class II functions such as mature complex formation and antigen presentation, possibly due to disruption of Ii TM helix−helix interactions. Although this hypothesis has been reported several times in the literature, thus far no experimental measurements have been made to explore the relationship between TM domain structure and TM mutations that affect Ii function. We have applied biophysical and computational methods to study the folding and assembly of the Ii TM domain in isolation and find that the TM domain strongly self-associates. According to analytical ultracentrifugation analyses, the primary oligomeric state for this TM domain is a strongly associated trimer with a dissociation constant of approximately 120 nM in DPC micelles. We have also examined the effect of functionally important mutations of glutamine and threonine residues in the TM domain on its structure, providing results that now link the disruption of TM helix interactions to previously reported losses of Ii function.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Antigens, Differentiation, B-Lymphocyte - chemistry</subject><subject>Antigens, Differentiation, B-Lymphocyte - genetics</subject><subject>Antigens, Differentiation, B-Lymphocyte - metabolism</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Detergents - pharmacology</subject><subject>Histocompatibility Antigens Class II - biosynthesis</subject><subject>Histocompatibility Antigens Class II - chemistry</subject><subject>Histocompatibility Antigens Class II - genetics</subject><subject>Histocompatibility Antigens Class II - metabolism</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation - genetics</subject><subject>Protein Binding</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Amino Acid</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtO3DAUhq2qqAzTLngB5E2RWAR8HNuJuxuFwow0iLYzRRUby0lsEchlamcQsGLLa_IkGGUEm0pdHZ3zf-f2I7QL5BAIhaO8IpwCUPMBjYBTEjEp-Uc0IoSIiEpBttGO99chZSRhn9A2CAEpAIzQxay91a7SbY-zK121eOl06xvT5CEafNw1Q7FqjKsedF917bfnxyc8wYverHDQzqYZzmrtPZ7N8MT70Frff0ZbVtfefNnEMfp98n2ZTaP5-eksm8wjHae0j6TQmtuy4MYmPJW55SmYJCkM2JykjGn2KltDeMqgLGXBCCRSFMaWsRVUxGO0P8xdue7v2vheNZUvTF2H47u1VyJJBaVM_hcEGUuWxnEADwawcJ33zli1Cs9rd6-AqFe31Zvbgd3bDF3njSnfyY29AYgGoPK9uXvTtbsJl8UJV8sfC_Xzcvrr4pj9UYvAfx14XXh13a1dG8z7x-IXtQGVXA</recordid><startdate>20060425</startdate><enddate>20060425</enddate><creator>Dixon, Ann M</creator><creator>Stanley, Bradford J</creator><creator>Matthews, Erin E</creator><creator>Dawson, Jessica P</creator><creator>Engelman, Donald M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>20060425</creationdate><title>Invariant Chain Transmembrane Domain Trimerization:  A Step in MHC Class II Assembly</title><author>Dixon, Ann M ; Stanley, Bradford J ; Matthews, Erin E ; Dawson, Jessica P ; Engelman, Donald M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a382t-96aa5fdc5ef7589bf581e77ce1fb0844a4a5fdfe05841dd9c401796cefd3f6263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Antigens, Differentiation, B-Lymphocyte - chemistry</topic><topic>Antigens, Differentiation, B-Lymphocyte - genetics</topic><topic>Antigens, Differentiation, B-Lymphocyte - metabolism</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Detergents - pharmacology</topic><topic>Histocompatibility Antigens Class II - biosynthesis</topic><topic>Histocompatibility Antigens Class II - chemistry</topic><topic>Histocompatibility Antigens Class II - genetics</topic><topic>Histocompatibility Antigens Class II - metabolism</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation - genetics</topic><topic>Protein Binding</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Amino Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dixon, Ann M</creatorcontrib><creatorcontrib>Stanley, Bradford J</creatorcontrib><creatorcontrib>Matthews, Erin E</creatorcontrib><creatorcontrib>Dawson, Jessica P</creatorcontrib><creatorcontrib>Engelman, Donald M</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dixon, Ann M</au><au>Stanley, Bradford J</au><au>Matthews, Erin E</au><au>Dawson, Jessica P</au><au>Engelman, Donald M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariant Chain Transmembrane Domain Trimerization:  A Step in MHC Class II Assembly</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2006-04-25</date><risdate>2006</risdate><volume>45</volume><issue>16</issue><spage>5228</spage><epage>5234</epage><pages>5228-5234</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>The transmembrane (TM) domain of the major histocompatibility complex (MHC) class II-associated invariant chain (Ii) has long been implicated in both correct folding and function of the MHC class II complex. To function correctly, Ii must form a trimer, and the TM domain is one of the domains thought to stabilize the trimeric state. Specific mutations in the TM domain have been shown previously to disrupt MHC class II functions such as mature complex formation and antigen presentation, possibly due to disruption of Ii TM helix−helix interactions. Although this hypothesis has been reported several times in the literature, thus far no experimental measurements have been made to explore the relationship between TM domain structure and TM mutations that affect Ii function. We have applied biophysical and computational methods to study the folding and assembly of the Ii TM domain in isolation and find that the TM domain strongly self-associates. According to analytical ultracentrifugation analyses, the primary oligomeric state for this TM domain is a strongly associated trimer with a dissociation constant of approximately 120 nM in DPC micelles. We have also examined the effect of functionally important mutations of glutamine and threonine residues in the TM domain on its structure, providing results that now link the disruption of TM helix interactions to previously reported losses of Ii function.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>16618111</pmid><doi>10.1021/bi052112e</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2006-04, Vol.45 (16), p.5228-5234
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_67862249
source MEDLINE; American Chemical Society Publications
subjects Amino Acid Sequence
Animals
Antigens, Differentiation, B-Lymphocyte - chemistry
Antigens, Differentiation, B-Lymphocyte - genetics
Antigens, Differentiation, B-Lymphocyte - metabolism
Cell Membrane - chemistry
Cell Membrane - metabolism
Detergents - pharmacology
Histocompatibility Antigens Class II - biosynthesis
Histocompatibility Antigens Class II - chemistry
Histocompatibility Antigens Class II - genetics
Histocompatibility Antigens Class II - metabolism
Humans
Models, Molecular
Molecular Sequence Data
Mutation - genetics
Protein Binding
Protein Structure, Quaternary
Protein Structure, Secondary
Protein Structure, Tertiary
Sequence Alignment
Sequence Homology, Amino Acid
title Invariant Chain Transmembrane Domain Trimerization:  A Step in MHC Class II Assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A35%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariant%20Chain%20Transmembrane%20Domain%20Trimerization:%E2%80%89%20A%20Step%20in%20MHC%20Class%20II%20Assembly&rft.jtitle=Biochemistry%20(Easton)&rft.au=Dixon,%20Ann%20M&rft.date=2006-04-25&rft.volume=45&rft.issue=16&rft.spage=5228&rft.epage=5234&rft.pages=5228-5234&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi052112e&rft_dat=%3Cproquest_cross%3E67862249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19394833&rft_id=info:pmid/16618111&rfr_iscdi=true