Molecular dynamics investigations of the dissociation of SiO2 on an ab initio potential energy surface obtained using neural network methods
The neural network (NN) procedure to interpolate ab initio data for the purpose of molecular dynamics (MD) simulations has been tested on the SiO(2) system. Unlike other similar NN studies, here, we studied the dissociation of SiO(2) without the initial use of any empirical potential. During the dis...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2006-04, Vol.124 (13), p.134306-134306 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134306 |
---|---|
container_issue | 13 |
container_start_page | 134306 |
container_title | The Journal of chemical physics |
container_volume | 124 |
creator | Agrawal, Paras M Raff, Lionel M Hagan, Martin T Komanduri, Ranga |
description | The neural network (NN) procedure to interpolate ab initio data for the purpose of molecular dynamics (MD) simulations has been tested on the SiO(2) system. Unlike other similar NN studies, here, we studied the dissociation of SiO(2) without the initial use of any empirical potential. During the dissociation of SiO(2) into Si+O or Si+O(2), the spin multiplicity of the system changes from singlet to triplet in the first reaction and from singlet to pentet in the second. This paper employs four potential surfaces. The first is a NN fit [NN(STP)] to a database comprising the lowest of the singlet, triplet, and pentet energies obtained from density functional calculations in 6673 nuclear configurations. The other three potential surfaces are obtained from NN fits to the singlet, triplet, and pentet-state energies. The dissociation dynamics on the singlet-state and NN(STP) surfaces are reported. The results obtained using the singlet surface correspond to those expected if the reaction were to occur adiabatically. The dynamics on the NN(STP) surface represent those expected if the reaction follows a minimum-energy pathway. This study on a small system demonstrates the application of NNs for MD studies using ab initio data when the spin multiplicity of the system changes during the dissociation process. |
doi_str_mv | 10.1063/1.2185638 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67861398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67861398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-e104a09de8198e2e10f439dd316ef2f55e619b5b11ac6e9ce6e481fb639250e3</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMouq4e_AOSk-Cha6Zps81RxC9Q9uDeS5pO12ibrEmq7H_wR5vVBWFgvp55YV5CzoDNgAl-BbMcqlLwao9MgFUymwvJ9smEsRwyKZg4IschvDHGYJ4Xh-QIhABelMWEfD-7HvXYK0_bjVWD0YEa-4khmpWKxtlAXUfjK9LWhOC0-R1uZy9mkdNUqhRNujFpQdcuoo1G9RQt-tWGhtF3SiN1TVTGYkvHYOyKWhx9gizGL-ff6YDx1bXhhBx0qg94ustTsry7Xd48ZE-L-8eb66dMcyhihsAKxWSLFcgK89R2BZdty0Fgl3dliQJkUzYASguUGgUWFXSN4DIvGfIpufiTXXv3MaZX68EEjX2vLLox1GJeJXtklcDLP1B7F4LHrl57Myi_qYHVW-drqHfOJ_Z8Jzo2A7b_5M5q_gN4N4CP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67861398</pqid></control><display><type>article</type><title>Molecular dynamics investigations of the dissociation of SiO2 on an ab initio potential energy surface obtained using neural network methods</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Agrawal, Paras M ; Raff, Lionel M ; Hagan, Martin T ; Komanduri, Ranga</creator><creatorcontrib>Agrawal, Paras M ; Raff, Lionel M ; Hagan, Martin T ; Komanduri, Ranga</creatorcontrib><description>The neural network (NN) procedure to interpolate ab initio data for the purpose of molecular dynamics (MD) simulations has been tested on the SiO(2) system. Unlike other similar NN studies, here, we studied the dissociation of SiO(2) without the initial use of any empirical potential. During the dissociation of SiO(2) into Si+O or Si+O(2), the spin multiplicity of the system changes from singlet to triplet in the first reaction and from singlet to pentet in the second. This paper employs four potential surfaces. The first is a NN fit [NN(STP)] to a database comprising the lowest of the singlet, triplet, and pentet energies obtained from density functional calculations in 6673 nuclear configurations. The other three potential surfaces are obtained from NN fits to the singlet, triplet, and pentet-state energies. The dissociation dynamics on the singlet-state and NN(STP) surfaces are reported. The results obtained using the singlet surface correspond to those expected if the reaction were to occur adiabatically. The dynamics on the NN(STP) surface represent those expected if the reaction follows a minimum-energy pathway. This study on a small system demonstrates the application of NNs for MD studies using ab initio data when the spin multiplicity of the system changes during the dissociation process.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.2185638</identifier><identifier>PMID: 16613454</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of chemical physics, 2006-04, Vol.124 (13), p.134306-134306</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-e104a09de8198e2e10f439dd316ef2f55e619b5b11ac6e9ce6e481fb639250e3</citedby><cites>FETCH-LOGICAL-c314t-e104a09de8198e2e10f439dd316ef2f55e619b5b11ac6e9ce6e481fb639250e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16613454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Agrawal, Paras M</creatorcontrib><creatorcontrib>Raff, Lionel M</creatorcontrib><creatorcontrib>Hagan, Martin T</creatorcontrib><creatorcontrib>Komanduri, Ranga</creatorcontrib><title>Molecular dynamics investigations of the dissociation of SiO2 on an ab initio potential energy surface obtained using neural network methods</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The neural network (NN) procedure to interpolate ab initio data for the purpose of molecular dynamics (MD) simulations has been tested on the SiO(2) system. Unlike other similar NN studies, here, we studied the dissociation of SiO(2) without the initial use of any empirical potential. During the dissociation of SiO(2) into Si+O or Si+O(2), the spin multiplicity of the system changes from singlet to triplet in the first reaction and from singlet to pentet in the second. This paper employs four potential surfaces. The first is a NN fit [NN(STP)] to a database comprising the lowest of the singlet, triplet, and pentet energies obtained from density functional calculations in 6673 nuclear configurations. The other three potential surfaces are obtained from NN fits to the singlet, triplet, and pentet-state energies. The dissociation dynamics on the singlet-state and NN(STP) surfaces are reported. The results obtained using the singlet surface correspond to those expected if the reaction were to occur adiabatically. The dynamics on the NN(STP) surface represent those expected if the reaction follows a minimum-energy pathway. This study on a small system demonstrates the application of NNs for MD studies using ab initio data when the spin multiplicity of the system changes during the dissociation process.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LxDAQhoMouq4e_AOSk-Cha6Zps81RxC9Q9uDeS5pO12ibrEmq7H_wR5vVBWFgvp55YV5CzoDNgAl-BbMcqlLwao9MgFUymwvJ9smEsRwyKZg4IschvDHGYJ4Xh-QIhABelMWEfD-7HvXYK0_bjVWD0YEa-4khmpWKxtlAXUfjK9LWhOC0-R1uZy9mkdNUqhRNujFpQdcuoo1G9RQt-tWGhtF3SiN1TVTGYkvHYOyKWhx9gizGL-ff6YDx1bXhhBx0qg94ustTsry7Xd48ZE-L-8eb66dMcyhihsAKxWSLFcgK89R2BZdty0Fgl3dliQJkUzYASguUGgUWFXSN4DIvGfIpufiTXXv3MaZX68EEjX2vLLox1GJeJXtklcDLP1B7F4LHrl57Myi_qYHVW-drqHfOJ_Z8Jzo2A7b_5M5q_gN4N4CP</recordid><startdate>20060407</startdate><enddate>20060407</enddate><creator>Agrawal, Paras M</creator><creator>Raff, Lionel M</creator><creator>Hagan, Martin T</creator><creator>Komanduri, Ranga</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060407</creationdate><title>Molecular dynamics investigations of the dissociation of SiO2 on an ab initio potential energy surface obtained using neural network methods</title><author>Agrawal, Paras M ; Raff, Lionel M ; Hagan, Martin T ; Komanduri, Ranga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-e104a09de8198e2e10f439dd316ef2f55e619b5b11ac6e9ce6e481fb639250e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agrawal, Paras M</creatorcontrib><creatorcontrib>Raff, Lionel M</creatorcontrib><creatorcontrib>Hagan, Martin T</creatorcontrib><creatorcontrib>Komanduri, Ranga</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agrawal, Paras M</au><au>Raff, Lionel M</au><au>Hagan, Martin T</au><au>Komanduri, Ranga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics investigations of the dissociation of SiO2 on an ab initio potential energy surface obtained using neural network methods</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2006-04-07</date><risdate>2006</risdate><volume>124</volume><issue>13</issue><spage>134306</spage><epage>134306</epage><pages>134306-134306</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The neural network (NN) procedure to interpolate ab initio data for the purpose of molecular dynamics (MD) simulations has been tested on the SiO(2) system. Unlike other similar NN studies, here, we studied the dissociation of SiO(2) without the initial use of any empirical potential. During the dissociation of SiO(2) into Si+O or Si+O(2), the spin multiplicity of the system changes from singlet to triplet in the first reaction and from singlet to pentet in the second. This paper employs four potential surfaces. The first is a NN fit [NN(STP)] to a database comprising the lowest of the singlet, triplet, and pentet energies obtained from density functional calculations in 6673 nuclear configurations. The other three potential surfaces are obtained from NN fits to the singlet, triplet, and pentet-state energies. The dissociation dynamics on the singlet-state and NN(STP) surfaces are reported. The results obtained using the singlet surface correspond to those expected if the reaction were to occur adiabatically. The dynamics on the NN(STP) surface represent those expected if the reaction follows a minimum-energy pathway. This study on a small system demonstrates the application of NNs for MD studies using ab initio data when the spin multiplicity of the system changes during the dissociation process.</abstract><cop>United States</cop><pmid>16613454</pmid><doi>10.1063/1.2185638</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2006-04, Vol.124 (13), p.134306-134306 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_67861398 |
source | AIP Journals Complete; AIP Digital Archive |
title | Molecular dynamics investigations of the dissociation of SiO2 on an ab initio potential energy surface obtained using neural network methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20investigations%20of%20the%20dissociation%20of%20SiO2%20on%20an%20ab%20initio%20potential%20energy%20surface%20obtained%20using%20neural%20network%20methods&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Agrawal,%20Paras%20M&rft.date=2006-04-07&rft.volume=124&rft.issue=13&rft.spage=134306&rft.epage=134306&rft.pages=134306-134306&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.2185638&rft_dat=%3Cproquest_cross%3E67861398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67861398&rft_id=info:pmid/16613454&rfr_iscdi=true |