Machine learning in sedimentation modelling
The paper presents machine learning (ML) models that predict sedimentation in the harbour basin of the Port of Rotterdam. The important factors affecting the sedimentation process such as waves, wind, tides, surge, river discharge, etc. are studied, the corresponding time series data is analysed, mi...
Gespeichert in:
Veröffentlicht in: | Neural networks 2006-03, Vol.19 (2), p.208-214 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 214 |
---|---|
container_issue | 2 |
container_start_page | 208 |
container_title | Neural networks |
container_volume | 19 |
creator | Bhattacharya, B. Solomatine, D.P. |
description | The paper presents machine learning (ML) models that predict sedimentation in the harbour basin of the Port of Rotterdam. The important factors affecting the sedimentation process such as waves, wind, tides, surge, river discharge, etc. are studied, the corresponding time series data is analysed, missing values are estimated and the most important variables behind the process are chosen as the inputs. Two ML methods are used: MLP ANN and M5 model tree. The latter is a collection of piece-wise linear regression models, each being an expert for a particular region of the input space. The models are trained on the data collected during 1992–1998 and tested by the data of 1999–2000. The predictive accuracy of the models is found to be adequate for the potential use in the operational decision making. |
doi_str_mv | 10.1016/j.neunet.2006.01.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67861122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089360800600013X</els_id><sourcerecordid>19379808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-b4b53df5553d2f21c511119ec518cc4a02fdcfec3eeb774ae85c945c06a36b3</originalsourceid><addsrcrecordid>eNqFkEtLxDAQgIMo7rr6D0T25EVaJ0mbphdBFl-w4kHvIU2nmqVN16QV_Pdm6YI3ncPMYb558BFyTiGlQMX1JnU4OhxSBiBSoClAcUDmVBZlwgrJDskcZMkTARJm5CSEDURQZvyYzKjIOXDJ5-TqWZsP63DZovbOuveldcuAte3QDXqwvVt2fY1tG1un5KjRbcCzfV2Q1_u7t9Vjsn55eFrdrhOTMRiSKqtyXjd5HjNrGDU5jVFirNKYTANratOg4YhVUWQaZW7KLDcgNBcVX5DLaevW958jhkF1Npj4gXbYj0GJQgpKGfsXpCUvSgkygtkEGt-H4LFRW2877b8VBbVzqTZqcql2LhVQFV3GsYv9_rHqsP4d2suLwM0EYJTxZdGrYCw6E-15NIOqe_v3hR90bYbM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19379808</pqid></control><display><type>article</type><title>Machine learning in sedimentation modelling</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Bhattacharya, B. ; Solomatine, D.P.</creator><creatorcontrib>Bhattacharya, B. ; Solomatine, D.P.</creatorcontrib><description>The paper presents machine learning (ML) models that predict sedimentation in the harbour basin of the Port of Rotterdam. The important factors affecting the sedimentation process such as waves, wind, tides, surge, river discharge, etc. are studied, the corresponding time series data is analysed, missing values are estimated and the most important variables behind the process are chosen as the inputs. Two ML methods are used: MLP ANN and M5 model tree. The latter is a collection of piece-wise linear regression models, each being an expert for a particular region of the input space. The models are trained on the data collected during 1992–1998 and tested by the data of 1999–2000. The predictive accuracy of the models is found to be adequate for the potential use in the operational decision making.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2006.01.007</identifier><identifier>PMID: 16530383</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; ANN ; Artificial Intelligence ; Data Interpretation, Statistical ; Ecosystem ; Geologic Sediments ; Linear Models ; machine learning ; model trees ; Netherlands ; Neural Networks (Computer) ; Predictive Value of Tests ; Sedimentation ; Time Factors</subject><ispartof>Neural networks, 2006-03, Vol.19 (2), p.208-214</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-b4b53df5553d2f21c511119ec518cc4a02fdcfec3eeb774ae85c945c06a36b3</citedby><cites>FETCH-LOGICAL-c420t-b4b53df5553d2f21c511119ec518cc4a02fdcfec3eeb774ae85c945c06a36b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2006.01.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16530383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhattacharya, B.</creatorcontrib><creatorcontrib>Solomatine, D.P.</creatorcontrib><title>Machine learning in sedimentation modelling</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>The paper presents machine learning (ML) models that predict sedimentation in the harbour basin of the Port of Rotterdam. The important factors affecting the sedimentation process such as waves, wind, tides, surge, river discharge, etc. are studied, the corresponding time series data is analysed, missing values are estimated and the most important variables behind the process are chosen as the inputs. Two ML methods are used: MLP ANN and M5 model tree. The latter is a collection of piece-wise linear regression models, each being an expert for a particular region of the input space. The models are trained on the data collected during 1992–1998 and tested by the data of 1999–2000. The predictive accuracy of the models is found to be adequate for the potential use in the operational decision making.</description><subject>Algorithms</subject><subject>ANN</subject><subject>Artificial Intelligence</subject><subject>Data Interpretation, Statistical</subject><subject>Ecosystem</subject><subject>Geologic Sediments</subject><subject>Linear Models</subject><subject>machine learning</subject><subject>model trees</subject><subject>Netherlands</subject><subject>Neural Networks (Computer)</subject><subject>Predictive Value of Tests</subject><subject>Sedimentation</subject><subject>Time Factors</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLxDAQgIMo7rr6D0T25EVaJ0mbphdBFl-w4kHvIU2nmqVN16QV_Pdm6YI3ncPMYb558BFyTiGlQMX1JnU4OhxSBiBSoClAcUDmVBZlwgrJDskcZMkTARJm5CSEDURQZvyYzKjIOXDJ5-TqWZsP63DZovbOuveldcuAte3QDXqwvVt2fY1tG1un5KjRbcCzfV2Q1_u7t9Vjsn55eFrdrhOTMRiSKqtyXjd5HjNrGDU5jVFirNKYTANratOg4YhVUWQaZW7KLDcgNBcVX5DLaevW958jhkF1Npj4gXbYj0GJQgpKGfsXpCUvSgkygtkEGt-H4LFRW2877b8VBbVzqTZqcql2LhVQFV3GsYv9_rHqsP4d2suLwM0EYJTxZdGrYCw6E-15NIOqe_v3hR90bYbM</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Bhattacharya, B.</creator><creator>Solomatine, D.P.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20060301</creationdate><title>Machine learning in sedimentation modelling</title><author>Bhattacharya, B. ; Solomatine, D.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-b4b53df5553d2f21c511119ec518cc4a02fdcfec3eeb774ae85c945c06a36b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>ANN</topic><topic>Artificial Intelligence</topic><topic>Data Interpretation, Statistical</topic><topic>Ecosystem</topic><topic>Geologic Sediments</topic><topic>Linear Models</topic><topic>machine learning</topic><topic>model trees</topic><topic>Netherlands</topic><topic>Neural Networks (Computer)</topic><topic>Predictive Value of Tests</topic><topic>Sedimentation</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhattacharya, B.</creatorcontrib><creatorcontrib>Solomatine, D.P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhattacharya, B.</au><au>Solomatine, D.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning in sedimentation modelling</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2006-03-01</date><risdate>2006</risdate><volume>19</volume><issue>2</issue><spage>208</spage><epage>214</epage><pages>208-214</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>The paper presents machine learning (ML) models that predict sedimentation in the harbour basin of the Port of Rotterdam. The important factors affecting the sedimentation process such as waves, wind, tides, surge, river discharge, etc. are studied, the corresponding time series data is analysed, missing values are estimated and the most important variables behind the process are chosen as the inputs. Two ML methods are used: MLP ANN and M5 model tree. The latter is a collection of piece-wise linear regression models, each being an expert for a particular region of the input space. The models are trained on the data collected during 1992–1998 and tested by the data of 1999–2000. The predictive accuracy of the models is found to be adequate for the potential use in the operational decision making.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>16530383</pmid><doi>10.1016/j.neunet.2006.01.007</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2006-03, Vol.19 (2), p.208-214 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_67861122 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Algorithms ANN Artificial Intelligence Data Interpretation, Statistical Ecosystem Geologic Sediments Linear Models machine learning model trees Netherlands Neural Networks (Computer) Predictive Value of Tests Sedimentation Time Factors |
title | Machine learning in sedimentation modelling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T21%3A50%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20in%20sedimentation%20modelling&rft.jtitle=Neural%20networks&rft.au=Bhattacharya,%20B.&rft.date=2006-03-01&rft.volume=19&rft.issue=2&rft.spage=208&rft.epage=214&rft.pages=208-214&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2006.01.007&rft_dat=%3Cproquest_cross%3E19379808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19379808&rft_id=info:pmid/16530383&rft_els_id=S089360800600013X&rfr_iscdi=true |