Machine learning in sedimentation modelling

The paper presents machine learning (ML) models that predict sedimentation in the harbour basin of the Port of Rotterdam. The important factors affecting the sedimentation process such as waves, wind, tides, surge, river discharge, etc. are studied, the corresponding time series data is analysed, mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2006-03, Vol.19 (2), p.208-214
Hauptverfasser: Bhattacharya, B., Solomatine, D.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 214
container_issue 2
container_start_page 208
container_title Neural networks
container_volume 19
creator Bhattacharya, B.
Solomatine, D.P.
description The paper presents machine learning (ML) models that predict sedimentation in the harbour basin of the Port of Rotterdam. The important factors affecting the sedimentation process such as waves, wind, tides, surge, river discharge, etc. are studied, the corresponding time series data is analysed, missing values are estimated and the most important variables behind the process are chosen as the inputs. Two ML methods are used: MLP ANN and M5 model tree. The latter is a collection of piece-wise linear regression models, each being an expert for a particular region of the input space. The models are trained on the data collected during 1992–1998 and tested by the data of 1999–2000. The predictive accuracy of the models is found to be adequate for the potential use in the operational decision making.
doi_str_mv 10.1016/j.neunet.2006.01.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67861122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089360800600013X</els_id><sourcerecordid>19379808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-b4b53df5553d2f21c511119ec518cc4a02fdcfec3eeb774ae85c945c06a36b3</originalsourceid><addsrcrecordid>eNqFkEtLxDAQgIMo7rr6D0T25EVaJ0mbphdBFl-w4kHvIU2nmqVN16QV_Pdm6YI3ncPMYb558BFyTiGlQMX1JnU4OhxSBiBSoClAcUDmVBZlwgrJDskcZMkTARJm5CSEDURQZvyYzKjIOXDJ5-TqWZsP63DZovbOuveldcuAte3QDXqwvVt2fY1tG1un5KjRbcCzfV2Q1_u7t9Vjsn55eFrdrhOTMRiSKqtyXjd5HjNrGDU5jVFirNKYTANratOg4YhVUWQaZW7KLDcgNBcVX5DLaevW958jhkF1Npj4gXbYj0GJQgpKGfsXpCUvSgkygtkEGt-H4LFRW2877b8VBbVzqTZqcql2LhVQFV3GsYv9_rHqsP4d2suLwM0EYJTxZdGrYCw6E-15NIOqe_v3hR90bYbM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19379808</pqid></control><display><type>article</type><title>Machine learning in sedimentation modelling</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Bhattacharya, B. ; Solomatine, D.P.</creator><creatorcontrib>Bhattacharya, B. ; Solomatine, D.P.</creatorcontrib><description>The paper presents machine learning (ML) models that predict sedimentation in the harbour basin of the Port of Rotterdam. The important factors affecting the sedimentation process such as waves, wind, tides, surge, river discharge, etc. are studied, the corresponding time series data is analysed, missing values are estimated and the most important variables behind the process are chosen as the inputs. Two ML methods are used: MLP ANN and M5 model tree. The latter is a collection of piece-wise linear regression models, each being an expert for a particular region of the input space. The models are trained on the data collected during 1992–1998 and tested by the data of 1999–2000. The predictive accuracy of the models is found to be adequate for the potential use in the operational decision making.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2006.01.007</identifier><identifier>PMID: 16530383</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; ANN ; Artificial Intelligence ; Data Interpretation, Statistical ; Ecosystem ; Geologic Sediments ; Linear Models ; machine learning ; model trees ; Netherlands ; Neural Networks (Computer) ; Predictive Value of Tests ; Sedimentation ; Time Factors</subject><ispartof>Neural networks, 2006-03, Vol.19 (2), p.208-214</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-b4b53df5553d2f21c511119ec518cc4a02fdcfec3eeb774ae85c945c06a36b3</citedby><cites>FETCH-LOGICAL-c420t-b4b53df5553d2f21c511119ec518cc4a02fdcfec3eeb774ae85c945c06a36b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2006.01.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16530383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhattacharya, B.</creatorcontrib><creatorcontrib>Solomatine, D.P.</creatorcontrib><title>Machine learning in sedimentation modelling</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>The paper presents machine learning (ML) models that predict sedimentation in the harbour basin of the Port of Rotterdam. The important factors affecting the sedimentation process such as waves, wind, tides, surge, river discharge, etc. are studied, the corresponding time series data is analysed, missing values are estimated and the most important variables behind the process are chosen as the inputs. Two ML methods are used: MLP ANN and M5 model tree. The latter is a collection of piece-wise linear regression models, each being an expert for a particular region of the input space. The models are trained on the data collected during 1992–1998 and tested by the data of 1999–2000. The predictive accuracy of the models is found to be adequate for the potential use in the operational decision making.</description><subject>Algorithms</subject><subject>ANN</subject><subject>Artificial Intelligence</subject><subject>Data Interpretation, Statistical</subject><subject>Ecosystem</subject><subject>Geologic Sediments</subject><subject>Linear Models</subject><subject>machine learning</subject><subject>model trees</subject><subject>Netherlands</subject><subject>Neural Networks (Computer)</subject><subject>Predictive Value of Tests</subject><subject>Sedimentation</subject><subject>Time Factors</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLxDAQgIMo7rr6D0T25EVaJ0mbphdBFl-w4kHvIU2nmqVN16QV_Pdm6YI3ncPMYb558BFyTiGlQMX1JnU4OhxSBiBSoClAcUDmVBZlwgrJDskcZMkTARJm5CSEDURQZvyYzKjIOXDJ5-TqWZsP63DZovbOuveldcuAte3QDXqwvVt2fY1tG1un5KjRbcCzfV2Q1_u7t9Vjsn55eFrdrhOTMRiSKqtyXjd5HjNrGDU5jVFirNKYTANratOg4YhVUWQaZW7KLDcgNBcVX5DLaevW958jhkF1Npj4gXbYj0GJQgpKGfsXpCUvSgkygtkEGt-H4LFRW2877b8VBbVzqTZqcql2LhVQFV3GsYv9_rHqsP4d2suLwM0EYJTxZdGrYCw6E-15NIOqe_v3hR90bYbM</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Bhattacharya, B.</creator><creator>Solomatine, D.P.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20060301</creationdate><title>Machine learning in sedimentation modelling</title><author>Bhattacharya, B. ; Solomatine, D.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-b4b53df5553d2f21c511119ec518cc4a02fdcfec3eeb774ae85c945c06a36b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>ANN</topic><topic>Artificial Intelligence</topic><topic>Data Interpretation, Statistical</topic><topic>Ecosystem</topic><topic>Geologic Sediments</topic><topic>Linear Models</topic><topic>machine learning</topic><topic>model trees</topic><topic>Netherlands</topic><topic>Neural Networks (Computer)</topic><topic>Predictive Value of Tests</topic><topic>Sedimentation</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhattacharya, B.</creatorcontrib><creatorcontrib>Solomatine, D.P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhattacharya, B.</au><au>Solomatine, D.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning in sedimentation modelling</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2006-03-01</date><risdate>2006</risdate><volume>19</volume><issue>2</issue><spage>208</spage><epage>214</epage><pages>208-214</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>The paper presents machine learning (ML) models that predict sedimentation in the harbour basin of the Port of Rotterdam. The important factors affecting the sedimentation process such as waves, wind, tides, surge, river discharge, etc. are studied, the corresponding time series data is analysed, missing values are estimated and the most important variables behind the process are chosen as the inputs. Two ML methods are used: MLP ANN and M5 model tree. The latter is a collection of piece-wise linear regression models, each being an expert for a particular region of the input space. The models are trained on the data collected during 1992–1998 and tested by the data of 1999–2000. The predictive accuracy of the models is found to be adequate for the potential use in the operational decision making.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>16530383</pmid><doi>10.1016/j.neunet.2006.01.007</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2006-03, Vol.19 (2), p.208-214
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_67861122
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Algorithms
ANN
Artificial Intelligence
Data Interpretation, Statistical
Ecosystem
Geologic Sediments
Linear Models
machine learning
model trees
Netherlands
Neural Networks (Computer)
Predictive Value of Tests
Sedimentation
Time Factors
title Machine learning in sedimentation modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T21%3A50%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20in%20sedimentation%20modelling&rft.jtitle=Neural%20networks&rft.au=Bhattacharya,%20B.&rft.date=2006-03-01&rft.volume=19&rft.issue=2&rft.spage=208&rft.epage=214&rft.pages=208-214&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2006.01.007&rft_dat=%3Cproquest_cross%3E19379808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19379808&rft_id=info:pmid/16530383&rft_els_id=S089360800600013X&rfr_iscdi=true