Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics

Male fertility depends on the proper development of the male gametophyte, successful pollen germination, tube growth, and delivery of the sperm cells to the ovule. Previous studies have shown that nutrients like boron, and ion gradients or currents of Ca²⁺, H⁺, and K⁺ are critical for pollen tube gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant Physiology 2006-04, Vol.140 (4), p.1151-1168
Hauptverfasser: Bock, Kevin W, Honys, David, Ward, John M, Padmanaban, Senthilkumar, Nawrocki, Eric P, Hirschi, Kendal D, Twell, David, Sze, Heven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1168
container_issue 4
container_start_page 1151
container_title Plant Physiology
container_volume 140
creator Bock, Kevin W
Honys, David
Ward, John M
Padmanaban, Senthilkumar
Nawrocki, Eric P
Hirschi, Kendal D
Twell, David
Sze, Heven
description Male fertility depends on the proper development of the male gametophyte, successful pollen germination, tube growth, and delivery of the sperm cells to the ovule. Previous studies have shown that nutrients like boron, and ion gradients or currents of Ca²⁺, H⁺, and K⁺ are critical for pollen tube growth. However, the molecular identities of transporters mediating these fluxes are mostly unknown. As a first step to integrate transport with pollen development and function, a genome-wide analysis of transporter genes expressed in the male gametophyte at four developmental stages was conducted. Approximately 1,269 genes encoding classified transporters were collected from the Arabidopsis (Arabidopsis thaliana) genome. Of 757 transporter genes expressed in pollen, 16% or 124 genes, including AHA6, CNGC18, TIP1.3, and CHX08, are specifically or preferentially expressed relative to sporophytic tissues. Some genes are highly expressed in microspores and bicellular pollen (COPT3, STP2, OPT9), while others are activated only in tricellular or mature pollen (STP11, LHT7). Analyses of entire gene families showed that a subset of genes, including those expressed in sporophytic tissues, was developmentally regulated during pollen maturation. Early and late expression patterns revealed by transcriptome analysis are supported by promoter::[beta]-glucuronidase analyses of CHX genes and by other methods. Recent genetic studies based on a few transporters, including plasma membrane H⁺ pump AHA3, Ca²⁺ pump ACA9, and K⁺ channel SPIK, further support the expression patterns and the inferred functions revealed by our analyses. Thus, revealing the distinct expression patterns of specific transporters and unknown polytopic proteins during microgametogenesis provides new insights for strategic mutant analyses necessary to integrate the roles of transporters and potential receptors with male gametophyte development.
doi_str_mv 10.1104/pp.105.074708
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_67858612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20205682</jstor_id><sourcerecordid>20205682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-61b78cf776af247f7330a1f9827daf6afa9d17cc350a785263c7b2ab334f63a3</originalsourceid><addsrcrecordid>eNpVkkFvFSEUhSdGY2t16VIdF7p7zwsMMLMxMdXWJm1c-FwThgczNDNAganpv5dmXtq6gRvul3NP7qGq3iLYIgTNlxC2COgWeMOhfVYdI0rwBtOmff6kPqpepXQNAIig5mV1hBgDDrg7rvSFy3qIMls31Fd67qN0ut6VMwUfc_3X5rG-kpOuz-Wssw_jXdb1d32rJx9m7XIt3b4-W5zK1rs6j9Evw7gKqGhD9rNV6XX1wsgp6TeH-6Tanf3Ynf7cXP46vzj9drlRFDd5w1DPW2U4Z9LghhtOCEhkuhbzvTTlUXZ7xJUiFCRvKWZE8R7LnpDGMCLJSfV1lQ1LP-u9KvainESIdpbxTnhpxf8dZ0cx-FuBGkJbYEXg4yrgU7YiKZu1GpV3TqssOlJW2RXm82FI9DeLTlnMNik9TWVxfkmCFWctQ7iAmxVU0acUtXkwgkDcZydCKCUVa3aFf__U_SN9CKsAnw6ATEpOpuxY2fTIcQ5AMBTu3cpdp-zjQx8DBsrae2Mf1r6RXsghFo0_v3H5G4CAdUCB_APVO7b9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67858612</pqid></control><display><type>article</type><title>Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Bock, Kevin W ; Honys, David ; Ward, John M ; Padmanaban, Senthilkumar ; Nawrocki, Eric P ; Hirschi, Kendal D ; Twell, David ; Sze, Heven</creator><creatorcontrib>Bock, Kevin W ; Honys, David ; Ward, John M ; Padmanaban, Senthilkumar ; Nawrocki, Eric P ; Hirschi, Kendal D ; Twell, David ; Sze, Heven ; University of Maryland, College Park, MD</creatorcontrib><description>Male fertility depends on the proper development of the male gametophyte, successful pollen germination, tube growth, and delivery of the sperm cells to the ovule. Previous studies have shown that nutrients like boron, and ion gradients or currents of Ca²⁺, H⁺, and K⁺ are critical for pollen tube growth. However, the molecular identities of transporters mediating these fluxes are mostly unknown. As a first step to integrate transport with pollen development and function, a genome-wide analysis of transporter genes expressed in the male gametophyte at four developmental stages was conducted. Approximately 1,269 genes encoding classified transporters were collected from the Arabidopsis (Arabidopsis thaliana) genome. Of 757 transporter genes expressed in pollen, 16% or 124 genes, including AHA6, CNGC18, TIP1.3, and CHX08, are specifically or preferentially expressed relative to sporophytic tissues. Some genes are highly expressed in microspores and bicellular pollen (COPT3, STP2, OPT9), while others are activated only in tricellular or mature pollen (STP11, LHT7). Analyses of entire gene families showed that a subset of genes, including those expressed in sporophytic tissues, was developmentally regulated during pollen maturation. Early and late expression patterns revealed by transcriptome analysis are supported by promoter::[beta]-glucuronidase analyses of CHX genes and by other methods. Recent genetic studies based on a few transporters, including plasma membrane H⁺ pump AHA3, Ca²⁺ pump ACA9, and K⁺ channel SPIK, further support the expression patterns and the inferred functions revealed by our analyses. Thus, revealing the distinct expression patterns of specific transporters and unknown polytopic proteins during microgametogenesis provides new insights for strategic mutant analyses necessary to integrate the roles of transporters and potential receptors with male gametophyte development.</description><identifier>ISSN: 1532-2548</identifier><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.105.074708</identifier><identifier>PMID: 16607029</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis Proteins - physiology ; Arabidopsis thaliana ; BASIC BIOLOGICAL SCIENCES ; Biological and medical sciences ; Cell physiology ; Cluster Analysis ; Developmental biology ; flowering ; Flowers - anatomy &amp; histology ; Flowers - growth &amp; development ; Flowers - metabolism ; Fundamental and applied biological sciences. Psychology ; Gametogenesis - genetics ; Gametophytes ; Gene Expression Profiling ; gene expression regulation ; Gene Expression Regulation, Plant ; Genes ; genome ; Genome Analysis ; Genomes ; Genomics ; male flowers ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Membrane Transport Proteins - physiology ; Microspores ; Multigene Family ; physiological transport ; plant genetics ; plant physiology ; Plant physiology and development ; plant proteins ; Plants ; Plasma membrane and permeation ; Pollen ; Pollen - genetics ; Pollen - growth &amp; development ; Pollen - metabolism ; Pollen tubes ; Promoter Regions, Genetic ; Pumps ; Systems biology, membrane transport, Arabidopsis thaliana, genomics, pollen, transcriptome ; transcription (genetics) ; transcriptome ; Transcriptomes ; transcriptomics ; transporters</subject><ispartof>Plant Physiology, 2006-04, Vol.140 (4), p.1151-1168</ispartof><rights>Copyright 2006 American Society of Plant Biologists</rights><rights>2006 INIST-CNRS</rights><rights>Copyright © 2006, American Society of Plant Biologists 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-61b78cf776af247f7330a1f9827daf6afa9d17cc350a785263c7b2ab334f63a3</citedby><cites>FETCH-LOGICAL-c524t-61b78cf776af247f7330a1f9827daf6afa9d17cc350a785263c7b2ab334f63a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20205682$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20205682$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,800,882,27905,27906,57998,58231</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17700320$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16607029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/932549$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bock, Kevin W</creatorcontrib><creatorcontrib>Honys, David</creatorcontrib><creatorcontrib>Ward, John M</creatorcontrib><creatorcontrib>Padmanaban, Senthilkumar</creatorcontrib><creatorcontrib>Nawrocki, Eric P</creatorcontrib><creatorcontrib>Hirschi, Kendal D</creatorcontrib><creatorcontrib>Twell, David</creatorcontrib><creatorcontrib>Sze, Heven</creatorcontrib><creatorcontrib>University of Maryland, College Park, MD</creatorcontrib><title>Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics</title><title>Plant Physiology</title><addtitle>Plant Physiol</addtitle><description>Male fertility depends on the proper development of the male gametophyte, successful pollen germination, tube growth, and delivery of the sperm cells to the ovule. Previous studies have shown that nutrients like boron, and ion gradients or currents of Ca²⁺, H⁺, and K⁺ are critical for pollen tube growth. However, the molecular identities of transporters mediating these fluxes are mostly unknown. As a first step to integrate transport with pollen development and function, a genome-wide analysis of transporter genes expressed in the male gametophyte at four developmental stages was conducted. Approximately 1,269 genes encoding classified transporters were collected from the Arabidopsis (Arabidopsis thaliana) genome. Of 757 transporter genes expressed in pollen, 16% or 124 genes, including AHA6, CNGC18, TIP1.3, and CHX08, are specifically or preferentially expressed relative to sporophytic tissues. Some genes are highly expressed in microspores and bicellular pollen (COPT3, STP2, OPT9), while others are activated only in tricellular or mature pollen (STP11, LHT7). Analyses of entire gene families showed that a subset of genes, including those expressed in sporophytic tissues, was developmentally regulated during pollen maturation. Early and late expression patterns revealed by transcriptome analysis are supported by promoter::[beta]-glucuronidase analyses of CHX genes and by other methods. Recent genetic studies based on a few transporters, including plasma membrane H⁺ pump AHA3, Ca²⁺ pump ACA9, and K⁺ channel SPIK, further support the expression patterns and the inferred functions revealed by our analyses. Thus, revealing the distinct expression patterns of specific transporters and unknown polytopic proteins during microgametogenesis provides new insights for strategic mutant analyses necessary to integrate the roles of transporters and potential receptors with male gametophyte development.</description><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis Proteins - physiology</subject><subject>Arabidopsis thaliana</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological and medical sciences</subject><subject>Cell physiology</subject><subject>Cluster Analysis</subject><subject>Developmental biology</subject><subject>flowering</subject><subject>Flowers - anatomy &amp; histology</subject><subject>Flowers - growth &amp; development</subject><subject>Flowers - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gametogenesis - genetics</subject><subject>Gametophytes</subject><subject>Gene Expression Profiling</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>genome</subject><subject>Genome Analysis</subject><subject>Genomes</subject><subject>Genomics</subject><subject>male flowers</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Membrane Transport Proteins - physiology</subject><subject>Microspores</subject><subject>Multigene Family</subject><subject>physiological transport</subject><subject>plant genetics</subject><subject>plant physiology</subject><subject>Plant physiology and development</subject><subject>plant proteins</subject><subject>Plants</subject><subject>Plasma membrane and permeation</subject><subject>Pollen</subject><subject>Pollen - genetics</subject><subject>Pollen - growth &amp; development</subject><subject>Pollen - metabolism</subject><subject>Pollen tubes</subject><subject>Promoter Regions, Genetic</subject><subject>Pumps</subject><subject>Systems biology, membrane transport, Arabidopsis thaliana, genomics, pollen, transcriptome</subject><subject>transcription (genetics)</subject><subject>transcriptome</subject><subject>Transcriptomes</subject><subject>transcriptomics</subject><subject>transporters</subject><issn>1532-2548</issn><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkkFvFSEUhSdGY2t16VIdF7p7zwsMMLMxMdXWJm1c-FwThgczNDNAganpv5dmXtq6gRvul3NP7qGq3iLYIgTNlxC2COgWeMOhfVYdI0rwBtOmff6kPqpepXQNAIig5mV1hBgDDrg7rvSFy3qIMls31Fd67qN0ut6VMwUfc_3X5rG-kpOuz-Wssw_jXdb1d32rJx9m7XIt3b4-W5zK1rs6j9Evw7gKqGhD9rNV6XX1wsgp6TeH-6Tanf3Ynf7cXP46vzj9drlRFDd5w1DPW2U4Z9LghhtOCEhkuhbzvTTlUXZ7xJUiFCRvKWZE8R7LnpDGMCLJSfV1lQ1LP-u9KvainESIdpbxTnhpxf8dZ0cx-FuBGkJbYEXg4yrgU7YiKZu1GpV3TqssOlJW2RXm82FI9DeLTlnMNik9TWVxfkmCFWctQ7iAmxVU0acUtXkwgkDcZydCKCUVa3aFf__U_SN9CKsAnw6ATEpOpuxY2fTIcQ5AMBTu3cpdp-zjQx8DBsrae2Mf1r6RXsghFo0_v3H5G4CAdUCB_APVO7b9</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Bock, Kevin W</creator><creator>Honys, David</creator><creator>Ward, John M</creator><creator>Padmanaban, Senthilkumar</creator><creator>Nawrocki, Eric P</creator><creator>Hirschi, Kendal D</creator><creator>Twell, David</creator><creator>Sze, Heven</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20060401</creationdate><title>Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics</title><author>Bock, Kevin W ; Honys, David ; Ward, John M ; Padmanaban, Senthilkumar ; Nawrocki, Eric P ; Hirschi, Kendal D ; Twell, David ; Sze, Heven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-61b78cf776af247f7330a1f9827daf6afa9d17cc350a785263c7b2ab334f63a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis Proteins - physiology</topic><topic>Arabidopsis thaliana</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological and medical sciences</topic><topic>Cell physiology</topic><topic>Cluster Analysis</topic><topic>Developmental biology</topic><topic>flowering</topic><topic>Flowers - anatomy &amp; histology</topic><topic>Flowers - growth &amp; development</topic><topic>Flowers - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gametogenesis - genetics</topic><topic>Gametophytes</topic><topic>Gene Expression Profiling</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>genome</topic><topic>Genome Analysis</topic><topic>Genomes</topic><topic>Genomics</topic><topic>male flowers</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Membrane Transport Proteins - physiology</topic><topic>Microspores</topic><topic>Multigene Family</topic><topic>physiological transport</topic><topic>plant genetics</topic><topic>plant physiology</topic><topic>Plant physiology and development</topic><topic>plant proteins</topic><topic>Plants</topic><topic>Plasma membrane and permeation</topic><topic>Pollen</topic><topic>Pollen - genetics</topic><topic>Pollen - growth &amp; development</topic><topic>Pollen - metabolism</topic><topic>Pollen tubes</topic><topic>Promoter Regions, Genetic</topic><topic>Pumps</topic><topic>Systems biology, membrane transport, Arabidopsis thaliana, genomics, pollen, transcriptome</topic><topic>transcription (genetics)</topic><topic>transcriptome</topic><topic>Transcriptomes</topic><topic>transcriptomics</topic><topic>transporters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bock, Kevin W</creatorcontrib><creatorcontrib>Honys, David</creatorcontrib><creatorcontrib>Ward, John M</creatorcontrib><creatorcontrib>Padmanaban, Senthilkumar</creatorcontrib><creatorcontrib>Nawrocki, Eric P</creatorcontrib><creatorcontrib>Hirschi, Kendal D</creatorcontrib><creatorcontrib>Twell, David</creatorcontrib><creatorcontrib>Sze, Heven</creatorcontrib><creatorcontrib>University of Maryland, College Park, MD</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bock, Kevin W</au><au>Honys, David</au><au>Ward, John M</au><au>Padmanaban, Senthilkumar</au><au>Nawrocki, Eric P</au><au>Hirschi, Kendal D</au><au>Twell, David</au><au>Sze, Heven</au><aucorp>University of Maryland, College Park, MD</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics</atitle><jtitle>Plant Physiology</jtitle><addtitle>Plant Physiol</addtitle><date>2006-04-01</date><risdate>2006</risdate><volume>140</volume><issue>4</issue><spage>1151</spage><epage>1168</epage><pages>1151-1168</pages><issn>1532-2548</issn><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Male fertility depends on the proper development of the male gametophyte, successful pollen germination, tube growth, and delivery of the sperm cells to the ovule. Previous studies have shown that nutrients like boron, and ion gradients or currents of Ca²⁺, H⁺, and K⁺ are critical for pollen tube growth. However, the molecular identities of transporters mediating these fluxes are mostly unknown. As a first step to integrate transport with pollen development and function, a genome-wide analysis of transporter genes expressed in the male gametophyte at four developmental stages was conducted. Approximately 1,269 genes encoding classified transporters were collected from the Arabidopsis (Arabidopsis thaliana) genome. Of 757 transporter genes expressed in pollen, 16% or 124 genes, including AHA6, CNGC18, TIP1.3, and CHX08, are specifically or preferentially expressed relative to sporophytic tissues. Some genes are highly expressed in microspores and bicellular pollen (COPT3, STP2, OPT9), while others are activated only in tricellular or mature pollen (STP11, LHT7). Analyses of entire gene families showed that a subset of genes, including those expressed in sporophytic tissues, was developmentally regulated during pollen maturation. Early and late expression patterns revealed by transcriptome analysis are supported by promoter::[beta]-glucuronidase analyses of CHX genes and by other methods. Recent genetic studies based on a few transporters, including plasma membrane H⁺ pump AHA3, Ca²⁺ pump ACA9, and K⁺ channel SPIK, further support the expression patterns and the inferred functions revealed by our analyses. Thus, revealing the distinct expression patterns of specific transporters and unknown polytopic proteins during microgametogenesis provides new insights for strategic mutant analyses necessary to integrate the roles of transporters and potential receptors with male gametophyte development.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>16607029</pmid><doi>10.1104/pp.105.074708</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1532-2548
ispartof Plant Physiology, 2006-04, Vol.140 (4), p.1151-1168
issn 1532-2548
0032-0889
1532-2548
language eng
recordid cdi_proquest_miscellaneous_67858612
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current)
subjects Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis Proteins - physiology
Arabidopsis thaliana
BASIC BIOLOGICAL SCIENCES
Biological and medical sciences
Cell physiology
Cluster Analysis
Developmental biology
flowering
Flowers - anatomy & histology
Flowers - growth & development
Flowers - metabolism
Fundamental and applied biological sciences. Psychology
Gametogenesis - genetics
Gametophytes
Gene Expression Profiling
gene expression regulation
Gene Expression Regulation, Plant
Genes
genome
Genome Analysis
Genomes
Genomics
male flowers
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Membrane Transport Proteins - physiology
Microspores
Multigene Family
physiological transport
plant genetics
plant physiology
Plant physiology and development
plant proteins
Plants
Plasma membrane and permeation
Pollen
Pollen - genetics
Pollen - growth & development
Pollen - metabolism
Pollen tubes
Promoter Regions, Genetic
Pumps
Systems biology, membrane transport, Arabidopsis thaliana, genomics, pollen, transcriptome
transcription (genetics)
transcriptome
Transcriptomes
transcriptomics
transporters
title Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Membrane%20Transport%20with%20Male%20Gametophyte%20Development%20and%20Function%20through%20Transcriptomics&rft.jtitle=Plant%20Physiology&rft.au=Bock,%20Kevin%20W&rft.aucorp=University%20of%20Maryland,%20College%20Park,%20MD&rft.date=2006-04-01&rft.volume=140&rft.issue=4&rft.spage=1151&rft.epage=1168&rft.pages=1151-1168&rft.issn=1532-2548&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.105.074708&rft_dat=%3Cjstor_pubme%3E20205682%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67858612&rft_id=info:pmid/16607029&rft_jstor_id=20205682&rfr_iscdi=true