Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics
Male fertility depends on the proper development of the male gametophyte, successful pollen germination, tube growth, and delivery of the sperm cells to the ovule. Previous studies have shown that nutrients like boron, and ion gradients or currents of Ca²⁺, H⁺, and K⁺ are critical for pollen tube gr...
Gespeichert in:
Veröffentlicht in: | Plant Physiology 2006-04, Vol.140 (4), p.1151-1168 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1168 |
---|---|
container_issue | 4 |
container_start_page | 1151 |
container_title | Plant Physiology |
container_volume | 140 |
creator | Bock, Kevin W Honys, David Ward, John M Padmanaban, Senthilkumar Nawrocki, Eric P Hirschi, Kendal D Twell, David Sze, Heven |
description | Male fertility depends on the proper development of the male gametophyte, successful pollen germination, tube growth, and delivery of the sperm cells to the ovule. Previous studies have shown that nutrients like boron, and ion gradients or currents of Ca²⁺, H⁺, and K⁺ are critical for pollen tube growth. However, the molecular identities of transporters mediating these fluxes are mostly unknown. As a first step to integrate transport with pollen development and function, a genome-wide analysis of transporter genes expressed in the male gametophyte at four developmental stages was conducted. Approximately 1,269 genes encoding classified transporters were collected from the Arabidopsis (Arabidopsis thaliana) genome. Of 757 transporter genes expressed in pollen, 16% or 124 genes, including AHA6, CNGC18, TIP1.3, and CHX08, are specifically or preferentially expressed relative to sporophytic tissues. Some genes are highly expressed in microspores and bicellular pollen (COPT3, STP2, OPT9), while others are activated only in tricellular or mature pollen (STP11, LHT7). Analyses of entire gene families showed that a subset of genes, including those expressed in sporophytic tissues, was developmentally regulated during pollen maturation. Early and late expression patterns revealed by transcriptome analysis are supported by promoter::[beta]-glucuronidase analyses of CHX genes and by other methods. Recent genetic studies based on a few transporters, including plasma membrane H⁺ pump AHA3, Ca²⁺ pump ACA9, and K⁺ channel SPIK, further support the expression patterns and the inferred functions revealed by our analyses. Thus, revealing the distinct expression patterns of specific transporters and unknown polytopic proteins during microgametogenesis provides new insights for strategic mutant analyses necessary to integrate the roles of transporters and potential receptors with male gametophyte development. |
doi_str_mv | 10.1104/pp.105.074708 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_67858612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20205682</jstor_id><sourcerecordid>20205682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-61b78cf776af247f7330a1f9827daf6afa9d17cc350a785263c7b2ab334f63a3</originalsourceid><addsrcrecordid>eNpVkkFvFSEUhSdGY2t16VIdF7p7zwsMMLMxMdXWJm1c-FwThgczNDNAganpv5dmXtq6gRvul3NP7qGq3iLYIgTNlxC2COgWeMOhfVYdI0rwBtOmff6kPqpepXQNAIig5mV1hBgDDrg7rvSFy3qIMls31Fd67qN0ut6VMwUfc_3X5rG-kpOuz-Wssw_jXdb1d32rJx9m7XIt3b4-W5zK1rs6j9Evw7gKqGhD9rNV6XX1wsgp6TeH-6Tanf3Ynf7cXP46vzj9drlRFDd5w1DPW2U4Z9LghhtOCEhkuhbzvTTlUXZ7xJUiFCRvKWZE8R7LnpDGMCLJSfV1lQ1LP-u9KvainESIdpbxTnhpxf8dZ0cx-FuBGkJbYEXg4yrgU7YiKZu1GpV3TqssOlJW2RXm82FI9DeLTlnMNik9TWVxfkmCFWctQ7iAmxVU0acUtXkwgkDcZydCKCUVa3aFf__U_SN9CKsAnw6ATEpOpuxY2fTIcQ5AMBTu3cpdp-zjQx8DBsrae2Mf1r6RXsghFo0_v3H5G4CAdUCB_APVO7b9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67858612</pqid></control><display><type>article</type><title>Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Bock, Kevin W ; Honys, David ; Ward, John M ; Padmanaban, Senthilkumar ; Nawrocki, Eric P ; Hirschi, Kendal D ; Twell, David ; Sze, Heven</creator><creatorcontrib>Bock, Kevin W ; Honys, David ; Ward, John M ; Padmanaban, Senthilkumar ; Nawrocki, Eric P ; Hirschi, Kendal D ; Twell, David ; Sze, Heven ; University of Maryland, College Park, MD</creatorcontrib><description>Male fertility depends on the proper development of the male gametophyte, successful pollen germination, tube growth, and delivery of the sperm cells to the ovule. Previous studies have shown that nutrients like boron, and ion gradients or currents of Ca²⁺, H⁺, and K⁺ are critical for pollen tube growth. However, the molecular identities of transporters mediating these fluxes are mostly unknown. As a first step to integrate transport with pollen development and function, a genome-wide analysis of transporter genes expressed in the male gametophyte at four developmental stages was conducted. Approximately 1,269 genes encoding classified transporters were collected from the Arabidopsis (Arabidopsis thaliana) genome. Of 757 transporter genes expressed in pollen, 16% or 124 genes, including AHA6, CNGC18, TIP1.3, and CHX08, are specifically or preferentially expressed relative to sporophytic tissues. Some genes are highly expressed in microspores and bicellular pollen (COPT3, STP2, OPT9), while others are activated only in tricellular or mature pollen (STP11, LHT7). Analyses of entire gene families showed that a subset of genes, including those expressed in sporophytic tissues, was developmentally regulated during pollen maturation. Early and late expression patterns revealed by transcriptome analysis are supported by promoter::[beta]-glucuronidase analyses of CHX genes and by other methods. Recent genetic studies based on a few transporters, including plasma membrane H⁺ pump AHA3, Ca²⁺ pump ACA9, and K⁺ channel SPIK, further support the expression patterns and the inferred functions revealed by our analyses. Thus, revealing the distinct expression patterns of specific transporters and unknown polytopic proteins during microgametogenesis provides new insights for strategic mutant analyses necessary to integrate the roles of transporters and potential receptors with male gametophyte development.</description><identifier>ISSN: 1532-2548</identifier><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.105.074708</identifier><identifier>PMID: 16607029</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Arabidopsis - genetics ; Arabidopsis - growth & development ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis Proteins - physiology ; Arabidopsis thaliana ; BASIC BIOLOGICAL SCIENCES ; Biological and medical sciences ; Cell physiology ; Cluster Analysis ; Developmental biology ; flowering ; Flowers - anatomy & histology ; Flowers - growth & development ; Flowers - metabolism ; Fundamental and applied biological sciences. Psychology ; Gametogenesis - genetics ; Gametophytes ; Gene Expression Profiling ; gene expression regulation ; Gene Expression Regulation, Plant ; Genes ; genome ; Genome Analysis ; Genomes ; Genomics ; male flowers ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Membrane Transport Proteins - physiology ; Microspores ; Multigene Family ; physiological transport ; plant genetics ; plant physiology ; Plant physiology and development ; plant proteins ; Plants ; Plasma membrane and permeation ; Pollen ; Pollen - genetics ; Pollen - growth & development ; Pollen - metabolism ; Pollen tubes ; Promoter Regions, Genetic ; Pumps ; Systems biology, membrane transport, Arabidopsis thaliana, genomics, pollen, transcriptome ; transcription (genetics) ; transcriptome ; Transcriptomes ; transcriptomics ; transporters</subject><ispartof>Plant Physiology, 2006-04, Vol.140 (4), p.1151-1168</ispartof><rights>Copyright 2006 American Society of Plant Biologists</rights><rights>2006 INIST-CNRS</rights><rights>Copyright © 2006, American Society of Plant Biologists 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-61b78cf776af247f7330a1f9827daf6afa9d17cc350a785263c7b2ab334f63a3</citedby><cites>FETCH-LOGICAL-c524t-61b78cf776af247f7330a1f9827daf6afa9d17cc350a785263c7b2ab334f63a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20205682$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20205682$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,800,882,27905,27906,57998,58231</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17700320$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16607029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/932549$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bock, Kevin W</creatorcontrib><creatorcontrib>Honys, David</creatorcontrib><creatorcontrib>Ward, John M</creatorcontrib><creatorcontrib>Padmanaban, Senthilkumar</creatorcontrib><creatorcontrib>Nawrocki, Eric P</creatorcontrib><creatorcontrib>Hirschi, Kendal D</creatorcontrib><creatorcontrib>Twell, David</creatorcontrib><creatorcontrib>Sze, Heven</creatorcontrib><creatorcontrib>University of Maryland, College Park, MD</creatorcontrib><title>Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics</title><title>Plant Physiology</title><addtitle>Plant Physiol</addtitle><description>Male fertility depends on the proper development of the male gametophyte, successful pollen germination, tube growth, and delivery of the sperm cells to the ovule. Previous studies have shown that nutrients like boron, and ion gradients or currents of Ca²⁺, H⁺, and K⁺ are critical for pollen tube growth. However, the molecular identities of transporters mediating these fluxes are mostly unknown. As a first step to integrate transport with pollen development and function, a genome-wide analysis of transporter genes expressed in the male gametophyte at four developmental stages was conducted. Approximately 1,269 genes encoding classified transporters were collected from the Arabidopsis (Arabidopsis thaliana) genome. Of 757 transporter genes expressed in pollen, 16% or 124 genes, including AHA6, CNGC18, TIP1.3, and CHX08, are specifically or preferentially expressed relative to sporophytic tissues. Some genes are highly expressed in microspores and bicellular pollen (COPT3, STP2, OPT9), while others are activated only in tricellular or mature pollen (STP11, LHT7). Analyses of entire gene families showed that a subset of genes, including those expressed in sporophytic tissues, was developmentally regulated during pollen maturation. Early and late expression patterns revealed by transcriptome analysis are supported by promoter::[beta]-glucuronidase analyses of CHX genes and by other methods. Recent genetic studies based on a few transporters, including plasma membrane H⁺ pump AHA3, Ca²⁺ pump ACA9, and K⁺ channel SPIK, further support the expression patterns and the inferred functions revealed by our analyses. Thus, revealing the distinct expression patterns of specific transporters and unknown polytopic proteins during microgametogenesis provides new insights for strategic mutant analyses necessary to integrate the roles of transporters and potential receptors with male gametophyte development.</description><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis Proteins - physiology</subject><subject>Arabidopsis thaliana</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological and medical sciences</subject><subject>Cell physiology</subject><subject>Cluster Analysis</subject><subject>Developmental biology</subject><subject>flowering</subject><subject>Flowers - anatomy & histology</subject><subject>Flowers - growth & development</subject><subject>Flowers - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gametogenesis - genetics</subject><subject>Gametophytes</subject><subject>Gene Expression Profiling</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>genome</subject><subject>Genome Analysis</subject><subject>Genomes</subject><subject>Genomics</subject><subject>male flowers</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Membrane Transport Proteins - physiology</subject><subject>Microspores</subject><subject>Multigene Family</subject><subject>physiological transport</subject><subject>plant genetics</subject><subject>plant physiology</subject><subject>Plant physiology and development</subject><subject>plant proteins</subject><subject>Plants</subject><subject>Plasma membrane and permeation</subject><subject>Pollen</subject><subject>Pollen - genetics</subject><subject>Pollen - growth & development</subject><subject>Pollen - metabolism</subject><subject>Pollen tubes</subject><subject>Promoter Regions, Genetic</subject><subject>Pumps</subject><subject>Systems biology, membrane transport, Arabidopsis thaliana, genomics, pollen, transcriptome</subject><subject>transcription (genetics)</subject><subject>transcriptome</subject><subject>Transcriptomes</subject><subject>transcriptomics</subject><subject>transporters</subject><issn>1532-2548</issn><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkkFvFSEUhSdGY2t16VIdF7p7zwsMMLMxMdXWJm1c-FwThgczNDNAganpv5dmXtq6gRvul3NP7qGq3iLYIgTNlxC2COgWeMOhfVYdI0rwBtOmff6kPqpepXQNAIig5mV1hBgDDrg7rvSFy3qIMls31Fd67qN0ut6VMwUfc_3X5rG-kpOuz-Wssw_jXdb1d32rJx9m7XIt3b4-W5zK1rs6j9Evw7gKqGhD9rNV6XX1wsgp6TeH-6Tanf3Ynf7cXP46vzj9drlRFDd5w1DPW2U4Z9LghhtOCEhkuhbzvTTlUXZ7xJUiFCRvKWZE8R7LnpDGMCLJSfV1lQ1LP-u9KvainESIdpbxTnhpxf8dZ0cx-FuBGkJbYEXg4yrgU7YiKZu1GpV3TqssOlJW2RXm82FI9DeLTlnMNik9TWVxfkmCFWctQ7iAmxVU0acUtXkwgkDcZydCKCUVa3aFf__U_SN9CKsAnw6ATEpOpuxY2fTIcQ5AMBTu3cpdp-zjQx8DBsrae2Mf1r6RXsghFo0_v3H5G4CAdUCB_APVO7b9</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Bock, Kevin W</creator><creator>Honys, David</creator><creator>Ward, John M</creator><creator>Padmanaban, Senthilkumar</creator><creator>Nawrocki, Eric P</creator><creator>Hirschi, Kendal D</creator><creator>Twell, David</creator><creator>Sze, Heven</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20060401</creationdate><title>Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics</title><author>Bock, Kevin W ; Honys, David ; Ward, John M ; Padmanaban, Senthilkumar ; Nawrocki, Eric P ; Hirschi, Kendal D ; Twell, David ; Sze, Heven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-61b78cf776af247f7330a1f9827daf6afa9d17cc350a785263c7b2ab334f63a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis Proteins - physiology</topic><topic>Arabidopsis thaliana</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological and medical sciences</topic><topic>Cell physiology</topic><topic>Cluster Analysis</topic><topic>Developmental biology</topic><topic>flowering</topic><topic>Flowers - anatomy & histology</topic><topic>Flowers - growth & development</topic><topic>Flowers - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gametogenesis - genetics</topic><topic>Gametophytes</topic><topic>Gene Expression Profiling</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>genome</topic><topic>Genome Analysis</topic><topic>Genomes</topic><topic>Genomics</topic><topic>male flowers</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Membrane Transport Proteins - physiology</topic><topic>Microspores</topic><topic>Multigene Family</topic><topic>physiological transport</topic><topic>plant genetics</topic><topic>plant physiology</topic><topic>Plant physiology and development</topic><topic>plant proteins</topic><topic>Plants</topic><topic>Plasma membrane and permeation</topic><topic>Pollen</topic><topic>Pollen - genetics</topic><topic>Pollen - growth & development</topic><topic>Pollen - metabolism</topic><topic>Pollen tubes</topic><topic>Promoter Regions, Genetic</topic><topic>Pumps</topic><topic>Systems biology, membrane transport, Arabidopsis thaliana, genomics, pollen, transcriptome</topic><topic>transcription (genetics)</topic><topic>transcriptome</topic><topic>Transcriptomes</topic><topic>transcriptomics</topic><topic>transporters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bock, Kevin W</creatorcontrib><creatorcontrib>Honys, David</creatorcontrib><creatorcontrib>Ward, John M</creatorcontrib><creatorcontrib>Padmanaban, Senthilkumar</creatorcontrib><creatorcontrib>Nawrocki, Eric P</creatorcontrib><creatorcontrib>Hirschi, Kendal D</creatorcontrib><creatorcontrib>Twell, David</creatorcontrib><creatorcontrib>Sze, Heven</creatorcontrib><creatorcontrib>University of Maryland, College Park, MD</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bock, Kevin W</au><au>Honys, David</au><au>Ward, John M</au><au>Padmanaban, Senthilkumar</au><au>Nawrocki, Eric P</au><au>Hirschi, Kendal D</au><au>Twell, David</au><au>Sze, Heven</au><aucorp>University of Maryland, College Park, MD</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics</atitle><jtitle>Plant Physiology</jtitle><addtitle>Plant Physiol</addtitle><date>2006-04-01</date><risdate>2006</risdate><volume>140</volume><issue>4</issue><spage>1151</spage><epage>1168</epage><pages>1151-1168</pages><issn>1532-2548</issn><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Male fertility depends on the proper development of the male gametophyte, successful pollen germination, tube growth, and delivery of the sperm cells to the ovule. Previous studies have shown that nutrients like boron, and ion gradients or currents of Ca²⁺, H⁺, and K⁺ are critical for pollen tube growth. However, the molecular identities of transporters mediating these fluxes are mostly unknown. As a first step to integrate transport with pollen development and function, a genome-wide analysis of transporter genes expressed in the male gametophyte at four developmental stages was conducted. Approximately 1,269 genes encoding classified transporters were collected from the Arabidopsis (Arabidopsis thaliana) genome. Of 757 transporter genes expressed in pollen, 16% or 124 genes, including AHA6, CNGC18, TIP1.3, and CHX08, are specifically or preferentially expressed relative to sporophytic tissues. Some genes are highly expressed in microspores and bicellular pollen (COPT3, STP2, OPT9), while others are activated only in tricellular or mature pollen (STP11, LHT7). Analyses of entire gene families showed that a subset of genes, including those expressed in sporophytic tissues, was developmentally regulated during pollen maturation. Early and late expression patterns revealed by transcriptome analysis are supported by promoter::[beta]-glucuronidase analyses of CHX genes and by other methods. Recent genetic studies based on a few transporters, including plasma membrane H⁺ pump AHA3, Ca²⁺ pump ACA9, and K⁺ channel SPIK, further support the expression patterns and the inferred functions revealed by our analyses. Thus, revealing the distinct expression patterns of specific transporters and unknown polytopic proteins during microgametogenesis provides new insights for strategic mutant analyses necessary to integrate the roles of transporters and potential receptors with male gametophyte development.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>16607029</pmid><doi>10.1104/pp.105.074708</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-2548 |
ispartof | Plant Physiology, 2006-04, Vol.140 (4), p.1151-1168 |
issn | 1532-2548 0032-0889 1532-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_67858612 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current) |
subjects | Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis Proteins - physiology Arabidopsis thaliana BASIC BIOLOGICAL SCIENCES Biological and medical sciences Cell physiology Cluster Analysis Developmental biology flowering Flowers - anatomy & histology Flowers - growth & development Flowers - metabolism Fundamental and applied biological sciences. Psychology Gametogenesis - genetics Gametophytes Gene Expression Profiling gene expression regulation Gene Expression Regulation, Plant Genes genome Genome Analysis Genomes Genomics male flowers Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Membrane Transport Proteins - physiology Microspores Multigene Family physiological transport plant genetics plant physiology Plant physiology and development plant proteins Plants Plasma membrane and permeation Pollen Pollen - genetics Pollen - growth & development Pollen - metabolism Pollen tubes Promoter Regions, Genetic Pumps Systems biology, membrane transport, Arabidopsis thaliana, genomics, pollen, transcriptome transcription (genetics) transcriptome Transcriptomes transcriptomics transporters |
title | Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Membrane%20Transport%20with%20Male%20Gametophyte%20Development%20and%20Function%20through%20Transcriptomics&rft.jtitle=Plant%20Physiology&rft.au=Bock,%20Kevin%20W&rft.aucorp=University%20of%20Maryland,%20College%20Park,%20MD&rft.date=2006-04-01&rft.volume=140&rft.issue=4&rft.spage=1151&rft.epage=1168&rft.pages=1151-1168&rft.issn=1532-2548&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.105.074708&rft_dat=%3Cjstor_pubme%3E20205682%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67858612&rft_id=info:pmid/16607029&rft_jstor_id=20205682&rfr_iscdi=true |