Density-Controlled Growth of Aligned ZnO Nanowires Sharing a Common Contact: A Simple, Low-Cost, and Mask-Free Technique for Large-Scale Applications
An effective, low cost, simple, and mask-free pathway is demonstrated for achieving density control of the aligned ZnO nanowires grown for large-scale applications. By a slight variation of the thickness of the thermally evaporated gold catalyst film, a significant change in the density of aligned Z...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2006-04, Vol.110 (15), p.7720-7724 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An effective, low cost, simple, and mask-free pathway is demonstrated for achieving density control of the aligned ZnO nanowires grown for large-scale applications. By a slight variation of the thickness of the thermally evaporated gold catalyst film, a significant change in the density of aligned ZnO nanowires has been controlled. The growth processes of the nanowires on an Al0.5Ga0.5N substrate has been studied based on the wetting behavior of gold catalyst with or without source vapor, and the results classify the growth processes into three categories: separated dots initiated growth, continuous layer initiated growth, and scattered particle initiated growth. This study presents an approach for growing aligned nanowire arrays on a ceramic substrate with the simultaneous formation of a continuous conducting electrode at the roots, which is important for device applications, such as field emission. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/jp060346h |