Simulating biochemical networks at the particle level and in time and space: Green's function reaction dynamics

We present a technique, called Green's function reaction dynamics (GFRD), for particle-based simulations of reaction-diffusion systems. GFRD uses a maximum time step such that only single particles or pairs of particles have to be considered. For these particles, the Smoluchowski equations are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2005-04, Vol.94 (12), p.128103.1-128103.4, Article 128103
Hauptverfasser: VAN ZON, Jeroen S, TEN WOLDE, Pieter Rein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128103.4
container_issue 12
container_start_page 128103.1
container_title Physical review letters
container_volume 94
creator VAN ZON, Jeroen S
TEN WOLDE, Pieter Rein
description We present a technique, called Green's function reaction dynamics (GFRD), for particle-based simulations of reaction-diffusion systems. GFRD uses a maximum time step such that only single particles or pairs of particles have to be considered. For these particles, the Smoluchowski equations are solved analytically using Green's functions, which are used to set up an event-driven algorithm. We apply the technique to a model of gene expression. Under biologically relevant conditions, GFRD is up to 5 orders of magnitude faster than conventional particle-based schemes.
doi_str_mv 10.1103/physrevlett.94.128103
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67855522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67855522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-51e3b3f9b7d762af919929a3df8f02d43e925f363d5b3c13e66e88bc7325cf353</originalsourceid><addsrcrecordid>eNpFkU1P3DAQhq0KBMvHT2jlC-WUrT_WTswNoUKRVmpV6DlynHHXreME21m0_76muxKneTV6ZkZ6BqGPlCwpJfzLtNmlCFsPOS_VaklZU7of0IKSWlU1pasjtCCE00oRUp-is5T-EEIok80JOqVCEa6kXKDxyQ2z19mF37hzo9nA4Iz2OEB-HePfhHXGeQN40jE74wF72ILHOvTYBZzdAP9zmrSBG_wQAcJ1wnYOJrsx4Ah6H_pd0GVzukDHVvsEl4d6jn7df32--1atvz883t2uKyOYyJWgwDtuVVf3tWTaKqoUU5r3trGE9SsOignLJe9Fxw3lICU0TWdqzoSxXPBz9Hm_d4rjywwpt4NLBrzXAcY5tbJuhBCMFVDsQRPHVIzadopu0HHXUtK-mW5_FNM_Ybsuplu1avemy9ynw4G5G6B_nzqoLcDVAdCpGLVRB-PSOyfr8ikl-D--Toub</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67855522</pqid></control><display><type>article</type><title>Simulating biochemical networks at the particle level and in time and space: Green's function reaction dynamics</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>VAN ZON, Jeroen S ; TEN WOLDE, Pieter Rein</creator><creatorcontrib>VAN ZON, Jeroen S ; TEN WOLDE, Pieter Rein</creatorcontrib><description>We present a technique, called Green's function reaction dynamics (GFRD), for particle-based simulations of reaction-diffusion systems. GFRD uses a maximum time step such that only single particles or pairs of particles have to be considered. For these particles, the Smoluchowski equations are solved analytically using Green's functions, which are used to set up an event-driven algorithm. We apply the technique to a model of gene expression. Under biologically relevant conditions, GFRD is up to 5 orders of magnitude faster than conventional particle-based schemes.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.94.128103</identifier><identifier>PMID: 15903966</identifier><identifier>CODEN: PRLTAO</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>Algorithms ; Chemistry ; Diffusion ; DNA - genetics ; DNA-Directed RNA Polymerases - metabolism ; Exact sciences and technology ; Gene Expression ; General and physical chemistry ; Kinetics ; Models, Genetic ; Poisson Distribution ; Promoter Regions, Genetic ; Theory of reactions, general kinetics ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Physical review letters, 2005-04, Vol.94 (12), p.128103.1-128103.4, Article 128103</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-51e3b3f9b7d762af919929a3df8f02d43e925f363d5b3c13e66e88bc7325cf353</citedby><cites>FETCH-LOGICAL-c525t-51e3b3f9b7d762af919929a3df8f02d43e925f363d5b3c13e66e88bc7325cf353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16707995$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15903966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>VAN ZON, Jeroen S</creatorcontrib><creatorcontrib>TEN WOLDE, Pieter Rein</creatorcontrib><title>Simulating biochemical networks at the particle level and in time and space: Green's function reaction dynamics</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We present a technique, called Green's function reaction dynamics (GFRD), for particle-based simulations of reaction-diffusion systems. GFRD uses a maximum time step such that only single particles or pairs of particles have to be considered. For these particles, the Smoluchowski equations are solved analytically using Green's functions, which are used to set up an event-driven algorithm. We apply the technique to a model of gene expression. Under biologically relevant conditions, GFRD is up to 5 orders of magnitude faster than conventional particle-based schemes.</description><subject>Algorithms</subject><subject>Chemistry</subject><subject>Diffusion</subject><subject>DNA - genetics</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>Exact sciences and technology</subject><subject>Gene Expression</subject><subject>General and physical chemistry</subject><subject>Kinetics</subject><subject>Models, Genetic</subject><subject>Poisson Distribution</subject><subject>Promoter Regions, Genetic</subject><subject>Theory of reactions, general kinetics</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkU1P3DAQhq0KBMvHT2jlC-WUrT_WTswNoUKRVmpV6DlynHHXreME21m0_76muxKneTV6ZkZ6BqGPlCwpJfzLtNmlCFsPOS_VaklZU7of0IKSWlU1pasjtCCE00oRUp-is5T-EEIok80JOqVCEa6kXKDxyQ2z19mF37hzo9nA4Iz2OEB-HePfhHXGeQN40jE74wF72ILHOvTYBZzdAP9zmrSBG_wQAcJ1wnYOJrsx4Ah6H_pd0GVzukDHVvsEl4d6jn7df32--1atvz883t2uKyOYyJWgwDtuVVf3tWTaKqoUU5r3trGE9SsOignLJe9Fxw3lICU0TWdqzoSxXPBz9Hm_d4rjywwpt4NLBrzXAcY5tbJuhBCMFVDsQRPHVIzadopu0HHXUtK-mW5_FNM_Ybsuplu1avemy9ynw4G5G6B_nzqoLcDVAdCpGLVRB-PSOyfr8ikl-D--Toub</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>VAN ZON, Jeroen S</creator><creator>TEN WOLDE, Pieter Rein</creator><general>American Physical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050401</creationdate><title>Simulating biochemical networks at the particle level and in time and space: Green's function reaction dynamics</title><author>VAN ZON, Jeroen S ; TEN WOLDE, Pieter Rein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-51e3b3f9b7d762af919929a3df8f02d43e925f363d5b3c13e66e88bc7325cf353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Chemistry</topic><topic>Diffusion</topic><topic>DNA - genetics</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>Exact sciences and technology</topic><topic>Gene Expression</topic><topic>General and physical chemistry</topic><topic>Kinetics</topic><topic>Models, Genetic</topic><topic>Poisson Distribution</topic><topic>Promoter Regions, Genetic</topic><topic>Theory of reactions, general kinetics</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VAN ZON, Jeroen S</creatorcontrib><creatorcontrib>TEN WOLDE, Pieter Rein</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VAN ZON, Jeroen S</au><au>TEN WOLDE, Pieter Rein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating biochemical networks at the particle level and in time and space: Green's function reaction dynamics</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2005-04-01</date><risdate>2005</risdate><volume>94</volume><issue>12</issue><spage>128103.1</spage><epage>128103.4</epage><pages>128103.1-128103.4</pages><artnum>128103</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><coden>PRLTAO</coden><abstract>We present a technique, called Green's function reaction dynamics (GFRD), for particle-based simulations of reaction-diffusion systems. GFRD uses a maximum time step such that only single particles or pairs of particles have to be considered. For these particles, the Smoluchowski equations are solved analytically using Green's functions, which are used to set up an event-driven algorithm. We apply the technique to a model of gene expression. Under biologically relevant conditions, GFRD is up to 5 orders of magnitude faster than conventional particle-based schemes.</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>15903966</pmid><doi>10.1103/physrevlett.94.128103</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2005-04, Vol.94 (12), p.128103.1-128103.4, Article 128103
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_67855522
source MEDLINE; American Physical Society Journals
subjects Algorithms
Chemistry
Diffusion
DNA - genetics
DNA-Directed RNA Polymerases - metabolism
Exact sciences and technology
Gene Expression
General and physical chemistry
Kinetics
Models, Genetic
Poisson Distribution
Promoter Regions, Genetic
Theory of reactions, general kinetics
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Simulating biochemical networks at the particle level and in time and space: Green's function reaction dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20biochemical%20networks%20at%20the%20particle%20level%20and%20in%20time%20and%20space:%20Green's%20function%20reaction%20dynamics&rft.jtitle=Physical%20review%20letters&rft.au=VAN%20ZON,%20Jeroen%20S&rft.date=2005-04-01&rft.volume=94&rft.issue=12&rft.spage=128103.1&rft.epage=128103.4&rft.pages=128103.1-128103.4&rft.artnum=128103&rft.issn=0031-9007&rft.eissn=1079-7114&rft.coden=PRLTAO&rft_id=info:doi/10.1103/physrevlett.94.128103&rft_dat=%3Cproquest_cross%3E67855522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67855522&rft_id=info:pmid/15903966&rfr_iscdi=true