Spacetime structures of continuous-time quantum walks
The propagation by continuous-time quantum walks (CTQWs) on one-dimensional lattices shows structures in the transition probabilities between different sites reminiscent of quantum carpets. For a system with periodic boundary conditions, we calculate the transition probabilities for a CTQW by diagon...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2005-03, Vol.71 (3 Pt 2A), p.036128-036128, Article 036128 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 036128 |
---|---|
container_issue | 3 Pt 2A |
container_start_page | 036128 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 71 |
creator | Mülken, Oliver Blumen, Alexander |
description | The propagation by continuous-time quantum walks (CTQWs) on one-dimensional lattices shows structures in the transition probabilities between different sites reminiscent of quantum carpets. For a system with periodic boundary conditions, we calculate the transition probabilities for a CTQW by diagonalizing the transfer matrix and by a Bloch function ansatz. Remarkably, the results obtained for the Bloch function ansatz can be related to results from (discrete) generalized coined quantum walks. Furthermore, we show that here the first revival time turns out to be larger than for quantum carpets. |
doi_str_mv | 10.1103/PhysRevE.71.036128 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67849851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67849851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-7f0df7a43f2b57b57b17173b585aea52133a2bcd78283f59f1c5460c2941c3fd3</originalsourceid><addsrcrecordid>eNpFkFtLAzEQhYMotlb_gA-yT75tzWQ2m91HKa0KBcXLc8hmE1zdS5uL0n9vayvCwAzMOYfDR8gl0CkAxZun941_Nl_zqYApxRxYcUTGwDlNGYr8eHdjmaLgfETOvP-gFBkW2SkZAS8pcsjGhL-slDah6Uzig4s6RGd8MthED31o-jhEn_5-11H1IXbJt2o__Tk5sar15uKwJ-RtMX-d3afLx7uH2e0y1UghpMLS2gqVoWUVF7sBAQIrXnBlFGeAqFila1GwAi0vLWie5VSzMgONtsYJud7nrtywjsYH2TVem7ZVvdk2k7kosrLgsBWyvVC7wXtnrFy5plNuI4HKHSz5B0sKkHtYW9PVIT1Wnan_LQc6-AOHpWcJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67849851</pqid></control><display><type>article</type><title>Spacetime structures of continuous-time quantum walks</title><source>American Physical Society Journals</source><creator>Mülken, Oliver ; Blumen, Alexander</creator><creatorcontrib>Mülken, Oliver ; Blumen, Alexander</creatorcontrib><description>The propagation by continuous-time quantum walks (CTQWs) on one-dimensional lattices shows structures in the transition probabilities between different sites reminiscent of quantum carpets. For a system with periodic boundary conditions, we calculate the transition probabilities for a CTQW by diagonalizing the transfer matrix and by a Bloch function ansatz. Remarkably, the results obtained for the Bloch function ansatz can be related to results from (discrete) generalized coined quantum walks. Furthermore, we show that here the first revival time turns out to be larger than for quantum carpets.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.71.036128</identifier><identifier>PMID: 15903514</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2005-03, Vol.71 (3 Pt 2A), p.036128-036128, Article 036128</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-7f0df7a43f2b57b57b17173b585aea52133a2bcd78283f59f1c5460c2941c3fd3</citedby><cites>FETCH-LOGICAL-c301t-7f0df7a43f2b57b57b17173b585aea52133a2bcd78283f59f1c5460c2941c3fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15903514$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mülken, Oliver</creatorcontrib><creatorcontrib>Blumen, Alexander</creatorcontrib><title>Spacetime structures of continuous-time quantum walks</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>The propagation by continuous-time quantum walks (CTQWs) on one-dimensional lattices shows structures in the transition probabilities between different sites reminiscent of quantum carpets. For a system with periodic boundary conditions, we calculate the transition probabilities for a CTQW by diagonalizing the transfer matrix and by a Bloch function ansatz. Remarkably, the results obtained for the Bloch function ansatz can be related to results from (discrete) generalized coined quantum walks. Furthermore, we show that here the first revival time turns out to be larger than for quantum carpets.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkFtLAzEQhYMotlb_gA-yT75tzWQ2m91HKa0KBcXLc8hmE1zdS5uL0n9vayvCwAzMOYfDR8gl0CkAxZun941_Nl_zqYApxRxYcUTGwDlNGYr8eHdjmaLgfETOvP-gFBkW2SkZAS8pcsjGhL-slDah6Uzig4s6RGd8MthED31o-jhEn_5-11H1IXbJt2o__Tk5sar15uKwJ-RtMX-d3afLx7uH2e0y1UghpMLS2gqVoWUVF7sBAQIrXnBlFGeAqFila1GwAi0vLWie5VSzMgONtsYJud7nrtywjsYH2TVem7ZVvdk2k7kosrLgsBWyvVC7wXtnrFy5plNuI4HKHSz5B0sKkHtYW9PVIT1Wnan_LQc6-AOHpWcJ</recordid><startdate>200503</startdate><enddate>200503</enddate><creator>Mülken, Oliver</creator><creator>Blumen, Alexander</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200503</creationdate><title>Spacetime structures of continuous-time quantum walks</title><author>Mülken, Oliver ; Blumen, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-7f0df7a43f2b57b57b17173b585aea52133a2bcd78283f59f1c5460c2941c3fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Mülken, Oliver</creatorcontrib><creatorcontrib>Blumen, Alexander</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mülken, Oliver</au><au>Blumen, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spacetime structures of continuous-time quantum walks</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2005-03</date><risdate>2005</risdate><volume>71</volume><issue>3 Pt 2A</issue><spage>036128</spage><epage>036128</epage><pages>036128-036128</pages><artnum>036128</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>The propagation by continuous-time quantum walks (CTQWs) on one-dimensional lattices shows structures in the transition probabilities between different sites reminiscent of quantum carpets. For a system with periodic boundary conditions, we calculate the transition probabilities for a CTQW by diagonalizing the transfer matrix and by a Bloch function ansatz. Remarkably, the results obtained for the Bloch function ansatz can be related to results from (discrete) generalized coined quantum walks. Furthermore, we show that here the first revival time turns out to be larger than for quantum carpets.</abstract><cop>United States</cop><pmid>15903514</pmid><doi>10.1103/PhysRevE.71.036128</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2005-03, Vol.71 (3 Pt 2A), p.036128-036128, Article 036128 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_67849851 |
source | American Physical Society Journals |
title | Spacetime structures of continuous-time quantum walks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spacetime%20structures%20of%20continuous-time%20quantum%20walks&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=M%C3%BClken,%20Oliver&rft.date=2005-03&rft.volume=71&rft.issue=3%20Pt%202A&rft.spage=036128&rft.epage=036128&rft.pages=036128-036128&rft.artnum=036128&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.71.036128&rft_dat=%3Cproquest_cross%3E67849851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67849851&rft_id=info:pmid/15903514&rfr_iscdi=true |