Spacetime structures of continuous-time quantum walks

The propagation by continuous-time quantum walks (CTQWs) on one-dimensional lattices shows structures in the transition probabilities between different sites reminiscent of quantum carpets. For a system with periodic boundary conditions, we calculate the transition probabilities for a CTQW by diagon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2005-03, Vol.71 (3 Pt 2A), p.036128-036128, Article 036128
Hauptverfasser: Mülken, Oliver, Blumen, Alexander
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 036128
container_issue 3 Pt 2A
container_start_page 036128
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 71
creator Mülken, Oliver
Blumen, Alexander
description The propagation by continuous-time quantum walks (CTQWs) on one-dimensional lattices shows structures in the transition probabilities between different sites reminiscent of quantum carpets. For a system with periodic boundary conditions, we calculate the transition probabilities for a CTQW by diagonalizing the transfer matrix and by a Bloch function ansatz. Remarkably, the results obtained for the Bloch function ansatz can be related to results from (discrete) generalized coined quantum walks. Furthermore, we show that here the first revival time turns out to be larger than for quantum carpets.
doi_str_mv 10.1103/PhysRevE.71.036128
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67849851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67849851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-7f0df7a43f2b57b57b17173b585aea52133a2bcd78283f59f1c5460c2941c3fd3</originalsourceid><addsrcrecordid>eNpFkFtLAzEQhYMotlb_gA-yT75tzWQ2m91HKa0KBcXLc8hmE1zdS5uL0n9vayvCwAzMOYfDR8gl0CkAxZun941_Nl_zqYApxRxYcUTGwDlNGYr8eHdjmaLgfETOvP-gFBkW2SkZAS8pcsjGhL-slDah6Uzig4s6RGd8MthED31o-jhEn_5-11H1IXbJt2o__Tk5sar15uKwJ-RtMX-d3afLx7uH2e0y1UghpMLS2gqVoWUVF7sBAQIrXnBlFGeAqFila1GwAi0vLWie5VSzMgONtsYJud7nrtywjsYH2TVem7ZVvdk2k7kosrLgsBWyvVC7wXtnrFy5plNuI4HKHSz5B0sKkHtYW9PVIT1Wnan_LQc6-AOHpWcJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67849851</pqid></control><display><type>article</type><title>Spacetime structures of continuous-time quantum walks</title><source>American Physical Society Journals</source><creator>Mülken, Oliver ; Blumen, Alexander</creator><creatorcontrib>Mülken, Oliver ; Blumen, Alexander</creatorcontrib><description>The propagation by continuous-time quantum walks (CTQWs) on one-dimensional lattices shows structures in the transition probabilities between different sites reminiscent of quantum carpets. For a system with periodic boundary conditions, we calculate the transition probabilities for a CTQW by diagonalizing the transfer matrix and by a Bloch function ansatz. Remarkably, the results obtained for the Bloch function ansatz can be related to results from (discrete) generalized coined quantum walks. Furthermore, we show that here the first revival time turns out to be larger than for quantum carpets.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.71.036128</identifier><identifier>PMID: 15903514</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2005-03, Vol.71 (3 Pt 2A), p.036128-036128, Article 036128</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-7f0df7a43f2b57b57b17173b585aea52133a2bcd78283f59f1c5460c2941c3fd3</citedby><cites>FETCH-LOGICAL-c301t-7f0df7a43f2b57b57b17173b585aea52133a2bcd78283f59f1c5460c2941c3fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15903514$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mülken, Oliver</creatorcontrib><creatorcontrib>Blumen, Alexander</creatorcontrib><title>Spacetime structures of continuous-time quantum walks</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>The propagation by continuous-time quantum walks (CTQWs) on one-dimensional lattices shows structures in the transition probabilities between different sites reminiscent of quantum carpets. For a system with periodic boundary conditions, we calculate the transition probabilities for a CTQW by diagonalizing the transfer matrix and by a Bloch function ansatz. Remarkably, the results obtained for the Bloch function ansatz can be related to results from (discrete) generalized coined quantum walks. Furthermore, we show that here the first revival time turns out to be larger than for quantum carpets.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkFtLAzEQhYMotlb_gA-yT75tzWQ2m91HKa0KBcXLc8hmE1zdS5uL0n9vayvCwAzMOYfDR8gl0CkAxZun941_Nl_zqYApxRxYcUTGwDlNGYr8eHdjmaLgfETOvP-gFBkW2SkZAS8pcsjGhL-slDah6Uzig4s6RGd8MthED31o-jhEn_5-11H1IXbJt2o__Tk5sar15uKwJ-RtMX-d3afLx7uH2e0y1UghpMLS2gqVoWUVF7sBAQIrXnBlFGeAqFila1GwAi0vLWie5VSzMgONtsYJud7nrtywjsYH2TVem7ZVvdk2k7kosrLgsBWyvVC7wXtnrFy5plNuI4HKHSz5B0sKkHtYW9PVIT1Wnan_LQc6-AOHpWcJ</recordid><startdate>200503</startdate><enddate>200503</enddate><creator>Mülken, Oliver</creator><creator>Blumen, Alexander</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200503</creationdate><title>Spacetime structures of continuous-time quantum walks</title><author>Mülken, Oliver ; Blumen, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-7f0df7a43f2b57b57b17173b585aea52133a2bcd78283f59f1c5460c2941c3fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Mülken, Oliver</creatorcontrib><creatorcontrib>Blumen, Alexander</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mülken, Oliver</au><au>Blumen, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spacetime structures of continuous-time quantum walks</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2005-03</date><risdate>2005</risdate><volume>71</volume><issue>3 Pt 2A</issue><spage>036128</spage><epage>036128</epage><pages>036128-036128</pages><artnum>036128</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>The propagation by continuous-time quantum walks (CTQWs) on one-dimensional lattices shows structures in the transition probabilities between different sites reminiscent of quantum carpets. For a system with periodic boundary conditions, we calculate the transition probabilities for a CTQW by diagonalizing the transfer matrix and by a Bloch function ansatz. Remarkably, the results obtained for the Bloch function ansatz can be related to results from (discrete) generalized coined quantum walks. Furthermore, we show that here the first revival time turns out to be larger than for quantum carpets.</abstract><cop>United States</cop><pmid>15903514</pmid><doi>10.1103/PhysRevE.71.036128</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2005-03, Vol.71 (3 Pt 2A), p.036128-036128, Article 036128
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_67849851
source American Physical Society Journals
title Spacetime structures of continuous-time quantum walks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spacetime%20structures%20of%20continuous-time%20quantum%20walks&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=M%C3%BClken,%20Oliver&rft.date=2005-03&rft.volume=71&rft.issue=3%20Pt%202A&rft.spage=036128&rft.epage=036128&rft.pages=036128-036128&rft.artnum=036128&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.71.036128&rft_dat=%3Cproquest_cross%3E67849851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67849851&rft_id=info:pmid/15903514&rfr_iscdi=true