Order-disorder phase transition in random-walk networks
In this paper we study in detail the behavior of random-walk networks (RWN's). These networks are a generalization of the well-known random Boolean networks (RBN's), a classical approach to the study of the genome. RWN's are also discrete networks, but their response is defined by sma...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2005-03, Vol.71 (3 Pt 1), p.031104-031104, Article 031104 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 031104 |
---|---|
container_issue | 3 Pt 1 |
container_start_page | 031104 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 71 |
creator | Ballesteros, Fernando J Luque, Bartolo |
description | In this paper we study in detail the behavior of random-walk networks (RWN's). These networks are a generalization of the well-known random Boolean networks (RBN's), a classical approach to the study of the genome. RWN's are also discrete networks, but their response is defined by small variations in the state of each gene, thus being a more realistic representation of the genome and a natural bridge between discrete and continuous models. RWN's show a clear transition between order and disorder. Here we explicitly deduce the formula of the critical line for the annealed model and compute numerically the transition points for quenched and annealed models. We show that RBN's and the annealed model of RWN's act as an upper and a lower limit for the quenched model of RWN's. Finally we calculate the limit of the annealed model for the continuous case. |
doi_str_mv | 10.1103/PhysRevE.71.031104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67847524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67847524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-8b4e3f64ce58ddfed5c45fa6de7f7d2bfdf8463e3c489806514427ed7ebef38f3</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhC0EoqXwAhxQTtxc7Kwdu0dUlR-pUhGCs5XEazU0iYudUPXtSdUiTjs7mpnDR8gtZ1POGTy8rffxHX8WU8WnDAZLnJExl5LRFFR2ftAwo6CkHJGrGL8YgxS0uCQjLmcMBIMxUatgMVBbRX8QyXadR0y6kLex6irfJlWbDI_1Dd3l9SZpsdv5sInX5MLldcSb052Qz6fFx_yFLlfPr_PHJS2B8Y7qQiC4TJQotbUOrSyFdHlmUTll08JZp0UGCKXQM80yyYVIFVqFBTrQDibk_ri7Df67x9iZpool1nXeou-jyZQWSqZiCKbHYBl8jAGd2YaqycPecGYOuMwfLqO4OeIaSnen9b5o0P5XTnzgF_yEaMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67847524</pqid></control><display><type>article</type><title>Order-disorder phase transition in random-walk networks</title><source>American Physical Society Journals</source><creator>Ballesteros, Fernando J ; Luque, Bartolo</creator><creatorcontrib>Ballesteros, Fernando J ; Luque, Bartolo</creatorcontrib><description>In this paper we study in detail the behavior of random-walk networks (RWN's). These networks are a generalization of the well-known random Boolean networks (RBN's), a classical approach to the study of the genome. RWN's are also discrete networks, but their response is defined by small variations in the state of each gene, thus being a more realistic representation of the genome and a natural bridge between discrete and continuous models. RWN's show a clear transition between order and disorder. Here we explicitly deduce the formula of the critical line for the annealed model and compute numerically the transition points for quenched and annealed models. We show that RBN's and the annealed model of RWN's act as an upper and a lower limit for the quenched model of RWN's. Finally we calculate the limit of the annealed model for the continuous case.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.71.031104</identifier><identifier>PMID: 15903403</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2005-03, Vol.71 (3 Pt 1), p.031104-031104, Article 031104</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-8b4e3f64ce58ddfed5c45fa6de7f7d2bfdf8463e3c489806514427ed7ebef38f3</citedby><cites>FETCH-LOGICAL-c301t-8b4e3f64ce58ddfed5c45fa6de7f7d2bfdf8463e3c489806514427ed7ebef38f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15903403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ballesteros, Fernando J</creatorcontrib><creatorcontrib>Luque, Bartolo</creatorcontrib><title>Order-disorder phase transition in random-walk networks</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>In this paper we study in detail the behavior of random-walk networks (RWN's). These networks are a generalization of the well-known random Boolean networks (RBN's), a classical approach to the study of the genome. RWN's are also discrete networks, but their response is defined by small variations in the state of each gene, thus being a more realistic representation of the genome and a natural bridge between discrete and continuous models. RWN's show a clear transition between order and disorder. Here we explicitly deduce the formula of the critical line for the annealed model and compute numerically the transition points for quenched and annealed models. We show that RBN's and the annealed model of RWN's act as an upper and a lower limit for the quenched model of RWN's. Finally we calculate the limit of the annealed model for the continuous case.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkM1OwzAQhC0EoqXwAhxQTtxc7Kwdu0dUlR-pUhGCs5XEazU0iYudUPXtSdUiTjs7mpnDR8gtZ1POGTy8rffxHX8WU8WnDAZLnJExl5LRFFR2ftAwo6CkHJGrGL8YgxS0uCQjLmcMBIMxUatgMVBbRX8QyXadR0y6kLex6irfJlWbDI_1Dd3l9SZpsdv5sInX5MLldcSb052Qz6fFx_yFLlfPr_PHJS2B8Y7qQiC4TJQotbUOrSyFdHlmUTll08JZp0UGCKXQM80yyYVIFVqFBTrQDibk_ri7Df67x9iZpool1nXeou-jyZQWSqZiCKbHYBl8jAGd2YaqycPecGYOuMwfLqO4OeIaSnen9b5o0P5XTnzgF_yEaMo</recordid><startdate>200503</startdate><enddate>200503</enddate><creator>Ballesteros, Fernando J</creator><creator>Luque, Bartolo</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200503</creationdate><title>Order-disorder phase transition in random-walk networks</title><author>Ballesteros, Fernando J ; Luque, Bartolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-8b4e3f64ce58ddfed5c45fa6de7f7d2bfdf8463e3c489806514427ed7ebef38f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Ballesteros, Fernando J</creatorcontrib><creatorcontrib>Luque, Bartolo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ballesteros, Fernando J</au><au>Luque, Bartolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Order-disorder phase transition in random-walk networks</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2005-03</date><risdate>2005</risdate><volume>71</volume><issue>3 Pt 1</issue><spage>031104</spage><epage>031104</epage><pages>031104-031104</pages><artnum>031104</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>In this paper we study in detail the behavior of random-walk networks (RWN's). These networks are a generalization of the well-known random Boolean networks (RBN's), a classical approach to the study of the genome. RWN's are also discrete networks, but their response is defined by small variations in the state of each gene, thus being a more realistic representation of the genome and a natural bridge between discrete and continuous models. RWN's show a clear transition between order and disorder. Here we explicitly deduce the formula of the critical line for the annealed model and compute numerically the transition points for quenched and annealed models. We show that RBN's and the annealed model of RWN's act as an upper and a lower limit for the quenched model of RWN's. Finally we calculate the limit of the annealed model for the continuous case.</abstract><cop>United States</cop><pmid>15903403</pmid><doi>10.1103/PhysRevE.71.031104</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2005-03, Vol.71 (3 Pt 1), p.031104-031104, Article 031104 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_67847524 |
source | American Physical Society Journals |
title | Order-disorder phase transition in random-walk networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Order-disorder%20phase%20transition%20in%20random-walk%20networks&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Ballesteros,%20Fernando%20J&rft.date=2005-03&rft.volume=71&rft.issue=3%20Pt%201&rft.spage=031104&rft.epage=031104&rft.pages=031104-031104&rft.artnum=031104&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.71.031104&rft_dat=%3Cproquest_cross%3E67847524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67847524&rft_id=info:pmid/15903403&rfr_iscdi=true |