Order-disorder phase transition in random-walk networks

In this paper we study in detail the behavior of random-walk networks (RWN's). These networks are a generalization of the well-known random Boolean networks (RBN's), a classical approach to the study of the genome. RWN's are also discrete networks, but their response is defined by sma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2005-03, Vol.71 (3 Pt 1), p.031104-031104, Article 031104
Hauptverfasser: Ballesteros, Fernando J, Luque, Bartolo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 031104
container_issue 3 Pt 1
container_start_page 031104
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 71
creator Ballesteros, Fernando J
Luque, Bartolo
description In this paper we study in detail the behavior of random-walk networks (RWN's). These networks are a generalization of the well-known random Boolean networks (RBN's), a classical approach to the study of the genome. RWN's are also discrete networks, but their response is defined by small variations in the state of each gene, thus being a more realistic representation of the genome and a natural bridge between discrete and continuous models. RWN's show a clear transition between order and disorder. Here we explicitly deduce the formula of the critical line for the annealed model and compute numerically the transition points for quenched and annealed models. We show that RBN's and the annealed model of RWN's act as an upper and a lower limit for the quenched model of RWN's. Finally we calculate the limit of the annealed model for the continuous case.
doi_str_mv 10.1103/PhysRevE.71.031104
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67847524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67847524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-8b4e3f64ce58ddfed5c45fa6de7f7d2bfdf8463e3c489806514427ed7ebef38f3</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhC0EoqXwAhxQTtxc7Kwdu0dUlR-pUhGCs5XEazU0iYudUPXtSdUiTjs7mpnDR8gtZ1POGTy8rffxHX8WU8WnDAZLnJExl5LRFFR2ftAwo6CkHJGrGL8YgxS0uCQjLmcMBIMxUatgMVBbRX8QyXadR0y6kLex6irfJlWbDI_1Dd3l9SZpsdv5sInX5MLldcSb052Qz6fFx_yFLlfPr_PHJS2B8Y7qQiC4TJQotbUOrSyFdHlmUTll08JZp0UGCKXQM80yyYVIFVqFBTrQDibk_ri7Df67x9iZpool1nXeou-jyZQWSqZiCKbHYBl8jAGd2YaqycPecGYOuMwfLqO4OeIaSnen9b5o0P5XTnzgF_yEaMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67847524</pqid></control><display><type>article</type><title>Order-disorder phase transition in random-walk networks</title><source>American Physical Society Journals</source><creator>Ballesteros, Fernando J ; Luque, Bartolo</creator><creatorcontrib>Ballesteros, Fernando J ; Luque, Bartolo</creatorcontrib><description>In this paper we study in detail the behavior of random-walk networks (RWN's). These networks are a generalization of the well-known random Boolean networks (RBN's), a classical approach to the study of the genome. RWN's are also discrete networks, but their response is defined by small variations in the state of each gene, thus being a more realistic representation of the genome and a natural bridge between discrete and continuous models. RWN's show a clear transition between order and disorder. Here we explicitly deduce the formula of the critical line for the annealed model and compute numerically the transition points for quenched and annealed models. We show that RBN's and the annealed model of RWN's act as an upper and a lower limit for the quenched model of RWN's. Finally we calculate the limit of the annealed model for the continuous case.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.71.031104</identifier><identifier>PMID: 15903403</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2005-03, Vol.71 (3 Pt 1), p.031104-031104, Article 031104</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-8b4e3f64ce58ddfed5c45fa6de7f7d2bfdf8463e3c489806514427ed7ebef38f3</citedby><cites>FETCH-LOGICAL-c301t-8b4e3f64ce58ddfed5c45fa6de7f7d2bfdf8463e3c489806514427ed7ebef38f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15903403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ballesteros, Fernando J</creatorcontrib><creatorcontrib>Luque, Bartolo</creatorcontrib><title>Order-disorder phase transition in random-walk networks</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>In this paper we study in detail the behavior of random-walk networks (RWN's). These networks are a generalization of the well-known random Boolean networks (RBN's), a classical approach to the study of the genome. RWN's are also discrete networks, but their response is defined by small variations in the state of each gene, thus being a more realistic representation of the genome and a natural bridge between discrete and continuous models. RWN's show a clear transition between order and disorder. Here we explicitly deduce the formula of the critical line for the annealed model and compute numerically the transition points for quenched and annealed models. We show that RBN's and the annealed model of RWN's act as an upper and a lower limit for the quenched model of RWN's. Finally we calculate the limit of the annealed model for the continuous case.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkM1OwzAQhC0EoqXwAhxQTtxc7Kwdu0dUlR-pUhGCs5XEazU0iYudUPXtSdUiTjs7mpnDR8gtZ1POGTy8rffxHX8WU8WnDAZLnJExl5LRFFR2ftAwo6CkHJGrGL8YgxS0uCQjLmcMBIMxUatgMVBbRX8QyXadR0y6kLex6irfJlWbDI_1Dd3l9SZpsdv5sInX5MLldcSb052Qz6fFx_yFLlfPr_PHJS2B8Y7qQiC4TJQotbUOrSyFdHlmUTll08JZp0UGCKXQM80yyYVIFVqFBTrQDibk_ri7Df67x9iZpool1nXeou-jyZQWSqZiCKbHYBl8jAGd2YaqycPecGYOuMwfLqO4OeIaSnen9b5o0P5XTnzgF_yEaMo</recordid><startdate>200503</startdate><enddate>200503</enddate><creator>Ballesteros, Fernando J</creator><creator>Luque, Bartolo</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200503</creationdate><title>Order-disorder phase transition in random-walk networks</title><author>Ballesteros, Fernando J ; Luque, Bartolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-8b4e3f64ce58ddfed5c45fa6de7f7d2bfdf8463e3c489806514427ed7ebef38f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Ballesteros, Fernando J</creatorcontrib><creatorcontrib>Luque, Bartolo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ballesteros, Fernando J</au><au>Luque, Bartolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Order-disorder phase transition in random-walk networks</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2005-03</date><risdate>2005</risdate><volume>71</volume><issue>3 Pt 1</issue><spage>031104</spage><epage>031104</epage><pages>031104-031104</pages><artnum>031104</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>In this paper we study in detail the behavior of random-walk networks (RWN's). These networks are a generalization of the well-known random Boolean networks (RBN's), a classical approach to the study of the genome. RWN's are also discrete networks, but their response is defined by small variations in the state of each gene, thus being a more realistic representation of the genome and a natural bridge between discrete and continuous models. RWN's show a clear transition between order and disorder. Here we explicitly deduce the formula of the critical line for the annealed model and compute numerically the transition points for quenched and annealed models. We show that RBN's and the annealed model of RWN's act as an upper and a lower limit for the quenched model of RWN's. Finally we calculate the limit of the annealed model for the continuous case.</abstract><cop>United States</cop><pmid>15903403</pmid><doi>10.1103/PhysRevE.71.031104</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2005-03, Vol.71 (3 Pt 1), p.031104-031104, Article 031104
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_67847524
source American Physical Society Journals
title Order-disorder phase transition in random-walk networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Order-disorder%20phase%20transition%20in%20random-walk%20networks&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Ballesteros,%20Fernando%20J&rft.date=2005-03&rft.volume=71&rft.issue=3%20Pt%201&rft.spage=031104&rft.epage=031104&rft.pages=031104-031104&rft.artnum=031104&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.71.031104&rft_dat=%3Cproquest_cross%3E67847524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67847524&rft_id=info:pmid/15903403&rfr_iscdi=true