Coaxial Electrospinning of (Fluorescein Isothiocyanate-Conjugated Bovine Serum Albumin)-Encapsulated Poly(ε-caprolactone) Nanofibers for Sustained Release
As an aim toward developing biologically mimetic and functional nanofiber-based tissue engineering scaffolds, we demonstrated the encapsulation of a model protein, fluorescein isothiocyanate-conjugated bovine serum albumin (fitcBSA), along with a water-soluble polymer, poly(ethylene glycol) (PEG), w...
Gespeichert in:
Veröffentlicht in: | Biomacromolecules 2006-04, Vol.7 (4), p.1049-1057 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1057 |
---|---|
container_issue | 4 |
container_start_page | 1049 |
container_title | Biomacromolecules |
container_volume | 7 |
creator | Zhang, Y. Z Wang, X Feng, Y Li, J Lim, C. T Ramakrishna, S |
description | As an aim toward developing biologically mimetic and functional nanofiber-based tissue engineering scaffolds, we demonstrated the encapsulation of a model protein, fluorescein isothiocyanate-conjugated bovine serum albumin (fitcBSA), along with a water-soluble polymer, poly(ethylene glycol) (PEG), within the biodegradable poly(ε-caprolactone) (PCL) nanofibers using a coaxial electrospinning technique. By variation of the inner flow rates from 0.2 to 0.6 mL/h with a constant outer flow rate of 1.8 mL/h, fitcBSA loadings of 0.85−2.17 mg/g of nanofibrous membranes were prepared. Variation of flow rates also resulted in increases of fiber sizes from ca. 270 nm to 380 nm. The encapsulation of fitcBSA/PEG within PCL was subsequently characterized by laser confocal scanning microscopy, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analysis. In vitro release studies were conducted to evaluate sustained release potential of the core−sheath-structured composite nanofiber PCL-r-fitcBSA/PEG. As a negative control, composite nanofiber PCL/fitcBSA/PEG blend was prepared from a normal electrospinning method. It was found that core−sheath nanofibers PCL-r-fitcBSA/PEG pronouncedly alleviated the initial burst release for higher protein loading and gave better sustainability compared to that of PCL/fitcBSA/PEG nanofibers. The present study would provide a basis for further design and optimization of processing conditions to control the nanostructure of core−sheath composite nanofibers and ultimately achieve desired release kinetics of bioactive proteins (e.g., growth factors) for practical tissue engineering applications. |
doi_str_mv | 10.1021/bm050743i |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67846650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67846650</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-b88f6bd93b2bf56ce670af740199a1e34f614de5effd26bce57563b81a0d1b203</originalsourceid><addsrcrecordid>eNpt0c1u1DAQB_AIgegHHHgB5AuoewjYSWxvjmW1hUoVIArnaOyMi1eOvdgx6j4Lz8Fr8Ey47Yq9cPLI-ulvz0xVvWD0DaMNe6smyqnsWvuoOma8EXUnaPP4vua1lL08qk5S2lBK-7bjT6sjJgqQDT2ufq0C3FpwZO1QzzGkrfXe-hsSDDm7cDlETBqtJ5cpzN9t0DvwMGO9Cn6Tb0o1knfhp_VIrjHmiZw7lSfrF_Xaa9im7O7J5-B2Z39-1-UqBgd6Dh4X5CP4YKzCmIgJkVznNENJGskXdAgJn1VPDLiEz_fnafXtYv119aG--vT-cnV-VUNH-7lWy6URauxb1SjDhUYhKRjZUdb3wLDtjGDdiByNGRuhNHLJRauWDOjIVEPb0-r1Q2753I-MaR4mW5p2DjyGnAYhl50Q_A4uHqAug0oRzbCNdoK4Gxgd7jYx_NtEsS_3oVlNOB7kfvQFvNoDSBqcieC1TQcnRd9I1h8c6DRsQo6-zOI_D_4FPmugtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67846650</pqid></control><display><type>article</type><title>Coaxial Electrospinning of (Fluorescein Isothiocyanate-Conjugated Bovine Serum Albumin)-Encapsulated Poly(ε-caprolactone) Nanofibers for Sustained Release</title><source>ACS Publications</source><source>MEDLINE</source><creator>Zhang, Y. Z ; Wang, X ; Feng, Y ; Li, J ; Lim, C. T ; Ramakrishna, S</creator><creatorcontrib>Zhang, Y. Z ; Wang, X ; Feng, Y ; Li, J ; Lim, C. T ; Ramakrishna, S</creatorcontrib><description>As an aim toward developing biologically mimetic and functional nanofiber-based tissue engineering scaffolds, we demonstrated the encapsulation of a model protein, fluorescein isothiocyanate-conjugated bovine serum albumin (fitcBSA), along with a water-soluble polymer, poly(ethylene glycol) (PEG), within the biodegradable poly(ε-caprolactone) (PCL) nanofibers using a coaxial electrospinning technique. By variation of the inner flow rates from 0.2 to 0.6 mL/h with a constant outer flow rate of 1.8 mL/h, fitcBSA loadings of 0.85−2.17 mg/g of nanofibrous membranes were prepared. Variation of flow rates also resulted in increases of fiber sizes from ca. 270 nm to 380 nm. The encapsulation of fitcBSA/PEG within PCL was subsequently characterized by laser confocal scanning microscopy, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analysis. In vitro release studies were conducted to evaluate sustained release potential of the core−sheath-structured composite nanofiber PCL-r-fitcBSA/PEG. As a negative control, composite nanofiber PCL/fitcBSA/PEG blend was prepared from a normal electrospinning method. It was found that core−sheath nanofibers PCL-r-fitcBSA/PEG pronouncedly alleviated the initial burst release for higher protein loading and gave better sustainability compared to that of PCL/fitcBSA/PEG nanofibers. The present study would provide a basis for further design and optimization of processing conditions to control the nanostructure of core−sheath composite nanofibers and ultimately achieve desired release kinetics of bioactive proteins (e.g., growth factors) for practical tissue engineering applications.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm050743i</identifier><identifier>PMID: 16602720</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Animals ; Applied sciences ; Biological and medical sciences ; Cattle ; Electrochemistry ; Exact sciences and technology ; Fibers and threads ; Fluorescein-5-isothiocyanate - chemistry ; Forms of application and semi-finished materials ; Medical sciences ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Particle Size ; Polyesters - chemistry ; Polymer industry, paints, wood ; Serum Albumin, Bovine - chemistry ; Surface Properties ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology of polymers ; Technology. Biomaterials. Equipments ; Time Factors</subject><ispartof>Biomacromolecules, 2006-04, Vol.7 (4), p.1049-1057</ispartof><rights>Copyright © 2006 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-b88f6bd93b2bf56ce670af740199a1e34f614de5effd26bce57563b81a0d1b203</citedby><cites>FETCH-LOGICAL-a409t-b88f6bd93b2bf56ce670af740199a1e34f614de5effd26bce57563b81a0d1b203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bm050743i$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bm050743i$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17692719$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16602720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Y. Z</creatorcontrib><creatorcontrib>Wang, X</creatorcontrib><creatorcontrib>Feng, Y</creatorcontrib><creatorcontrib>Li, J</creatorcontrib><creatorcontrib>Lim, C. T</creatorcontrib><creatorcontrib>Ramakrishna, S</creatorcontrib><title>Coaxial Electrospinning of (Fluorescein Isothiocyanate-Conjugated Bovine Serum Albumin)-Encapsulated Poly(ε-caprolactone) Nanofibers for Sustained Release</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>As an aim toward developing biologically mimetic and functional nanofiber-based tissue engineering scaffolds, we demonstrated the encapsulation of a model protein, fluorescein isothiocyanate-conjugated bovine serum albumin (fitcBSA), along with a water-soluble polymer, poly(ethylene glycol) (PEG), within the biodegradable poly(ε-caprolactone) (PCL) nanofibers using a coaxial electrospinning technique. By variation of the inner flow rates from 0.2 to 0.6 mL/h with a constant outer flow rate of 1.8 mL/h, fitcBSA loadings of 0.85−2.17 mg/g of nanofibrous membranes were prepared. Variation of flow rates also resulted in increases of fiber sizes from ca. 270 nm to 380 nm. The encapsulation of fitcBSA/PEG within PCL was subsequently characterized by laser confocal scanning microscopy, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analysis. In vitro release studies were conducted to evaluate sustained release potential of the core−sheath-structured composite nanofiber PCL-r-fitcBSA/PEG. As a negative control, composite nanofiber PCL/fitcBSA/PEG blend was prepared from a normal electrospinning method. It was found that core−sheath nanofibers PCL-r-fitcBSA/PEG pronouncedly alleviated the initial burst release for higher protein loading and gave better sustainability compared to that of PCL/fitcBSA/PEG nanofibers. The present study would provide a basis for further design and optimization of processing conditions to control the nanostructure of core−sheath composite nanofibers and ultimately achieve desired release kinetics of bioactive proteins (e.g., growth factors) for practical tissue engineering applications.</description><subject>Animals</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Cattle</subject><subject>Electrochemistry</subject><subject>Exact sciences and technology</subject><subject>Fibers and threads</subject><subject>Fluorescein-5-isothiocyanate - chemistry</subject><subject>Forms of application and semi-finished materials</subject><subject>Medical sciences</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Particle Size</subject><subject>Polyesters - chemistry</subject><subject>Polymer industry, paints, wood</subject><subject>Serum Albumin, Bovine - chemistry</subject><subject>Surface Properties</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology of polymers</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Time Factors</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0c1u1DAQB_AIgegHHHgB5AuoewjYSWxvjmW1hUoVIArnaOyMi1eOvdgx6j4Lz8Fr8Ey47Yq9cPLI-ulvz0xVvWD0DaMNe6smyqnsWvuoOma8EXUnaPP4vua1lL08qk5S2lBK-7bjT6sjJgqQDT2ufq0C3FpwZO1QzzGkrfXe-hsSDDm7cDlETBqtJ5cpzN9t0DvwMGO9Cn6Tb0o1knfhp_VIrjHmiZw7lSfrF_Xaa9im7O7J5-B2Z39-1-UqBgd6Dh4X5CP4YKzCmIgJkVznNENJGskXdAgJn1VPDLiEz_fnafXtYv119aG--vT-cnV-VUNH-7lWy6URauxb1SjDhUYhKRjZUdb3wLDtjGDdiByNGRuhNHLJRauWDOjIVEPb0-r1Q2753I-MaR4mW5p2DjyGnAYhl50Q_A4uHqAug0oRzbCNdoK4Gxgd7jYx_NtEsS_3oVlNOB7kfvQFvNoDSBqcieC1TQcnRd9I1h8c6DRsQo6-zOI_D_4FPmugtQ</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Zhang, Y. Z</creator><creator>Wang, X</creator><creator>Feng, Y</creator><creator>Li, J</creator><creator>Lim, C. T</creator><creator>Ramakrishna, S</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060401</creationdate><title>Coaxial Electrospinning of (Fluorescein Isothiocyanate-Conjugated Bovine Serum Albumin)-Encapsulated Poly(ε-caprolactone) Nanofibers for Sustained Release</title><author>Zhang, Y. Z ; Wang, X ; Feng, Y ; Li, J ; Lim, C. T ; Ramakrishna, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-b88f6bd93b2bf56ce670af740199a1e34f614de5effd26bce57563b81a0d1b203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Cattle</topic><topic>Electrochemistry</topic><topic>Exact sciences and technology</topic><topic>Fibers and threads</topic><topic>Fluorescein-5-isothiocyanate - chemistry</topic><topic>Forms of application and semi-finished materials</topic><topic>Medical sciences</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Particle Size</topic><topic>Polyesters - chemistry</topic><topic>Polymer industry, paints, wood</topic><topic>Serum Albumin, Bovine - chemistry</topic><topic>Surface Properties</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology of polymers</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Y. Z</creatorcontrib><creatorcontrib>Wang, X</creatorcontrib><creatorcontrib>Feng, Y</creatorcontrib><creatorcontrib>Li, J</creatorcontrib><creatorcontrib>Lim, C. T</creatorcontrib><creatorcontrib>Ramakrishna, S</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Y. Z</au><au>Wang, X</au><au>Feng, Y</au><au>Li, J</au><au>Lim, C. T</au><au>Ramakrishna, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coaxial Electrospinning of (Fluorescein Isothiocyanate-Conjugated Bovine Serum Albumin)-Encapsulated Poly(ε-caprolactone) Nanofibers for Sustained Release</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2006-04-01</date><risdate>2006</risdate><volume>7</volume><issue>4</issue><spage>1049</spage><epage>1057</epage><pages>1049-1057</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>As an aim toward developing biologically mimetic and functional nanofiber-based tissue engineering scaffolds, we demonstrated the encapsulation of a model protein, fluorescein isothiocyanate-conjugated bovine serum albumin (fitcBSA), along with a water-soluble polymer, poly(ethylene glycol) (PEG), within the biodegradable poly(ε-caprolactone) (PCL) nanofibers using a coaxial electrospinning technique. By variation of the inner flow rates from 0.2 to 0.6 mL/h with a constant outer flow rate of 1.8 mL/h, fitcBSA loadings of 0.85−2.17 mg/g of nanofibrous membranes were prepared. Variation of flow rates also resulted in increases of fiber sizes from ca. 270 nm to 380 nm. The encapsulation of fitcBSA/PEG within PCL was subsequently characterized by laser confocal scanning microscopy, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analysis. In vitro release studies were conducted to evaluate sustained release potential of the core−sheath-structured composite nanofiber PCL-r-fitcBSA/PEG. As a negative control, composite nanofiber PCL/fitcBSA/PEG blend was prepared from a normal electrospinning method. It was found that core−sheath nanofibers PCL-r-fitcBSA/PEG pronouncedly alleviated the initial burst release for higher protein loading and gave better sustainability compared to that of PCL/fitcBSA/PEG nanofibers. The present study would provide a basis for further design and optimization of processing conditions to control the nanostructure of core−sheath composite nanofibers and ultimately achieve desired release kinetics of bioactive proteins (e.g., growth factors) for practical tissue engineering applications.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16602720</pmid><doi>10.1021/bm050743i</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-7797 |
ispartof | Biomacromolecules, 2006-04, Vol.7 (4), p.1049-1057 |
issn | 1525-7797 1526-4602 |
language | eng |
recordid | cdi_proquest_miscellaneous_67846650 |
source | ACS Publications; MEDLINE |
subjects | Animals Applied sciences Biological and medical sciences Cattle Electrochemistry Exact sciences and technology Fibers and threads Fluorescein-5-isothiocyanate - chemistry Forms of application and semi-finished materials Medical sciences Nanostructures - chemistry Nanostructures - ultrastructure Nanotechnology - instrumentation Nanotechnology - methods Particle Size Polyesters - chemistry Polymer industry, paints, wood Serum Albumin, Bovine - chemistry Surface Properties Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Technology of polymers Technology. Biomaterials. Equipments Time Factors |
title | Coaxial Electrospinning of (Fluorescein Isothiocyanate-Conjugated Bovine Serum Albumin)-Encapsulated Poly(ε-caprolactone) Nanofibers for Sustained Release |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T16%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coaxial%20Electrospinning%20of%20(Fluorescein%20Isothiocyanate-Conjugated%20Bovine%20Serum%20Albumin)-Encapsulated%20Poly(%CE%B5-caprolactone)%20Nanofibers%20for%20Sustained%20Release&rft.jtitle=Biomacromolecules&rft.au=Zhang,%20Y.%20Z&rft.date=2006-04-01&rft.volume=7&rft.issue=4&rft.spage=1049&rft.epage=1057&rft.pages=1049-1057&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm050743i&rft_dat=%3Cproquest_cross%3E67846650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67846650&rft_id=info:pmid/16602720&rfr_iscdi=true |