Differences between properties of male and female motor units in the rat medial gastrocnemius muscle
Differences between motor units in hindlimb locomotor muscles of male and female Wistar rats were studied. The contractile and action potential properties of various types of motor units as well as proportions of these units in the medial gastrocnemius muscle were analyzed. Experiments were based on...
Gespeichert in:
Veröffentlicht in: | Journal of physiology and pharmacology : an official journal of the Polish Physiological Society 2006-03, Vol.57 (1), p.83-93 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Differences between motor units in hindlimb locomotor muscles of male and female Wistar rats were studied. The contractile and action potential properties of various types of motor units as well as proportions of these units in the medial gastrocnemius muscle were analyzed. Experiments were based on functional isolation and electrical stimulation of axons of single motor units. Composition of motor units was different for male and female subjects, with higher number of the fast fatigable and lower number of slow type units in male animals. The contraction and the half-relaxation times were significantly longer in male motor units, what might be due to differences in muscle size. Slower contraction of male motor units likely corresponds to lower firing rates of their motoneurons. On the other hand, no significant differences between sexes were observed with respect to force parameters of motor units (the twitch and the maximum tetanus forces), except the fast resistant units (higher force values in male muscles). The mass of the muscle was approximately 1.5 time bigger in male rats. However, the mean ratio of motor unit tetanus force to the muscle mass was almost twice smaller in this group, what indirectly suggests that muscles of male rats are composed of higher number of motor units. Finally, female muscles appeared to have higher fatigue resistance as the effect of higher proportion of resistant units (slow and fast resistant) and higher values of the fatigue index in respective motor unit types. The motor unit action potentials in female rats had slightly lower amplitudes and shorter time parameters although this difference was significant only for fast resistant units. |
---|---|
ISSN: | 0867-5910 |