Brain tissue phantoms for optical near infrared imaging
In this study, solid, stable, and cost-effective optical phantoms of scalp-skull, white matter and grey matter are developed by inverse method. To begin with, to obtain a range of optical parameters, absorption and reduced scattering coefficients (mu(a) and mu(s)', respectively), 20 homogeneous...
Gespeichert in:
Veröffentlicht in: | Experimental brain research 2006-04, Vol.170 (4), p.433-437 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 437 |
---|---|
container_issue | 4 |
container_start_page | 433 |
container_title | Experimental brain research |
container_volume | 170 |
creator | PRAHLAD RAO, K RADHAKRISHNAN, S RAMASUBBA REDDY, M |
description | In this study, solid, stable, and cost-effective optical phantoms of scalp-skull, white matter and grey matter are developed by inverse method. To begin with, to obtain a range of optical parameters, absorption and reduced scattering coefficients (mu(a) and mu(s)', respectively), 20 homogeneous phantoms were made of paraffin wax by using optically contrast black and highly scattering white colouring materials in different combination. By comparing the measured reflectance values for each phantom got from the four channel reflectometer with that obtained from steady-state diffusion equation, the values of mu(a) and mu(s)' were determined. Next, phantoms which exhibit specific optical properties of scalp-skull, white and grey matter are developed iteratively by comparing actual reflectance measurements got by adjusting the colour concentration with the predicted reflectance values from the diffusion equation. This is done as follows: to obtain mu(a) of 0.04 mm(-1) for scalp-skull, 9.5 mg of black dye per 100 ml of wax added since more attenuation of light occurs in bone tissue. To obtain a mu(s)' 6.0 mm(-1) for white matter in brain tissue, 190 mg of white dye per 100 ml of wax was used to facilitate more scatter of light. The colour concentrations of phantoms were then adjusted to obtain the predetermined values of optical parameters for scalp-skull, grey and white matter. |
doi_str_mv | 10.1007/s00221-005-0242-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67839151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20640703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-759b5456ce3d8180bc049304f147a1a2b0c63c2152bde069a0384fd3a35bb5a23</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMozjj6AG6kCLqrnpNL0y518AYDbnQd0jQdO_Rm0i58e1OmMODG1eHA95_LR8glwh0CyHsPQCnGACIGymnMj8gSOaMxIiTHZAmAPOYpZgty5v1uapmEU7LAhHFMBVsS-eh01UZD5f1oo_5Lt0PX-KjsXNT1Q2V0HbVWu6hqS6edLaKq0duq3Z6Tk1LX3l7MdUU-n58-1q_x5v3lbf2wiQ1L5RBLkeWCi8RYVqSYQm6AZwx4iVxq1DQHkzBDUdC8sJBkGljKy4JpJvJcaMpW5HY_t3fd92j9oJrKG1vXurXd6FUiU5ahwH9BCgkHCSyA13_AXTe6Njyhwh3IqcRpLe4h4zrvnS1V78Ln7kchqMm92rtXwb2a3CseMlfz4DFvbHFIzLIDcDMD2gexQWhrKn_gpERGU8l-AfwdiTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215142712</pqid></control><display><type>article</type><title>Brain tissue phantoms for optical near infrared imaging</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>PRAHLAD RAO, K ; RADHAKRISHNAN, S ; RAMASUBBA REDDY, M</creator><creatorcontrib>PRAHLAD RAO, K ; RADHAKRISHNAN, S ; RAMASUBBA REDDY, M</creatorcontrib><description>In this study, solid, stable, and cost-effective optical phantoms of scalp-skull, white matter and grey matter are developed by inverse method. To begin with, to obtain a range of optical parameters, absorption and reduced scattering coefficients (mu(a) and mu(s)', respectively), 20 homogeneous phantoms were made of paraffin wax by using optically contrast black and highly scattering white colouring materials in different combination. By comparing the measured reflectance values for each phantom got from the four channel reflectometer with that obtained from steady-state diffusion equation, the values of mu(a) and mu(s)' were determined. Next, phantoms which exhibit specific optical properties of scalp-skull, white and grey matter are developed iteratively by comparing actual reflectance measurements got by adjusting the colour concentration with the predicted reflectance values from the diffusion equation. This is done as follows: to obtain mu(a) of 0.04 mm(-1) for scalp-skull, 9.5 mg of black dye per 100 ml of wax added since more attenuation of light occurs in bone tissue. To obtain a mu(s)' 6.0 mm(-1) for white matter in brain tissue, 190 mg of white dye per 100 ml of wax was used to facilitate more scatter of light. The colour concentrations of phantoms were then adjusted to obtain the predetermined values of optical parameters for scalp-skull, grey and white matter.</description><identifier>ISSN: 0014-4819</identifier><identifier>EISSN: 1432-1106</identifier><identifier>DOI: 10.1007/s00221-005-0242-4</identifier><identifier>PMID: 16341853</identifier><identifier>CODEN: EXBRAP</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Animals ; Biological and medical sciences ; Brain - anatomy & histology ; Fundamental and applied biological sciences. Psychology ; Humans ; Image Interpretation, Computer-Assisted ; Light ; Medical sciences ; Models, Biological ; Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration ; Neurology ; Optical properties ; Optics and Photonics - instrumentation ; Paraffin ; Phantoms, Imaging ; Scattering, Radiation ; Tissues ; Vascular diseases and vascular malformations of the nervous system ; Vertebrates: nervous system and sense organs</subject><ispartof>Experimental brain research, 2006-04, Vol.170 (4), p.433-437</ispartof><rights>2006 INIST-CNRS</rights><rights>Springer-Verlag 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-759b5456ce3d8180bc049304f147a1a2b0c63c2152bde069a0384fd3a35bb5a23</citedby><cites>FETCH-LOGICAL-c387t-759b5456ce3d8180bc049304f147a1a2b0c63c2152bde069a0384fd3a35bb5a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17713287$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16341853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>PRAHLAD RAO, K</creatorcontrib><creatorcontrib>RADHAKRISHNAN, S</creatorcontrib><creatorcontrib>RAMASUBBA REDDY, M</creatorcontrib><title>Brain tissue phantoms for optical near infrared imaging</title><title>Experimental brain research</title><addtitle>Exp Brain Res</addtitle><description>In this study, solid, stable, and cost-effective optical phantoms of scalp-skull, white matter and grey matter are developed by inverse method. To begin with, to obtain a range of optical parameters, absorption and reduced scattering coefficients (mu(a) and mu(s)', respectively), 20 homogeneous phantoms were made of paraffin wax by using optically contrast black and highly scattering white colouring materials in different combination. By comparing the measured reflectance values for each phantom got from the four channel reflectometer with that obtained from steady-state diffusion equation, the values of mu(a) and mu(s)' were determined. Next, phantoms which exhibit specific optical properties of scalp-skull, white and grey matter are developed iteratively by comparing actual reflectance measurements got by adjusting the colour concentration with the predicted reflectance values from the diffusion equation. This is done as follows: to obtain mu(a) of 0.04 mm(-1) for scalp-skull, 9.5 mg of black dye per 100 ml of wax added since more attenuation of light occurs in bone tissue. To obtain a mu(s)' 6.0 mm(-1) for white matter in brain tissue, 190 mg of white dye per 100 ml of wax was used to facilitate more scatter of light. The colour concentrations of phantoms were then adjusted to obtain the predetermined values of optical parameters for scalp-skull, grey and white matter.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Brain - anatomy & histology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Light</subject><subject>Medical sciences</subject><subject>Models, Biological</subject><subject>Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration</subject><subject>Neurology</subject><subject>Optical properties</subject><subject>Optics and Photonics - instrumentation</subject><subject>Paraffin</subject><subject>Phantoms, Imaging</subject><subject>Scattering, Radiation</subject><subject>Tissues</subject><subject>Vascular diseases and vascular malformations of the nervous system</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0014-4819</issn><issn>1432-1106</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkMtKxDAUhoMozjj6AG6kCLqrnpNL0y518AYDbnQd0jQdO_Rm0i58e1OmMODG1eHA95_LR8glwh0CyHsPQCnGACIGymnMj8gSOaMxIiTHZAmAPOYpZgty5v1uapmEU7LAhHFMBVsS-eh01UZD5f1oo_5Lt0PX-KjsXNT1Q2V0HbVWu6hqS6edLaKq0duq3Z6Tk1LX3l7MdUU-n58-1q_x5v3lbf2wiQ1L5RBLkeWCi8RYVqSYQm6AZwx4iVxq1DQHkzBDUdC8sJBkGljKy4JpJvJcaMpW5HY_t3fd92j9oJrKG1vXurXd6FUiU5ahwH9BCgkHCSyA13_AXTe6Njyhwh3IqcRpLe4h4zrvnS1V78Ln7kchqMm92rtXwb2a3CseMlfz4DFvbHFIzLIDcDMD2gexQWhrKn_gpERGU8l-AfwdiTg</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>PRAHLAD RAO, K</creator><creator>RADHAKRISHNAN, S</creator><creator>RAMASUBBA REDDY, M</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88J</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2R</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060401</creationdate><title>Brain tissue phantoms for optical near infrared imaging</title><author>PRAHLAD RAO, K ; RADHAKRISHNAN, S ; RAMASUBBA REDDY, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-759b5456ce3d8180bc049304f147a1a2b0c63c2152bde069a0384fd3a35bb5a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Brain - anatomy & histology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Light</topic><topic>Medical sciences</topic><topic>Models, Biological</topic><topic>Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration</topic><topic>Neurology</topic><topic>Optical properties</topic><topic>Optics and Photonics - instrumentation</topic><topic>Paraffin</topic><topic>Phantoms, Imaging</topic><topic>Scattering, Radiation</topic><topic>Tissues</topic><topic>Vascular diseases and vascular malformations of the nervous system</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PRAHLAD RAO, K</creatorcontrib><creatorcontrib>RADHAKRISHNAN, S</creatorcontrib><creatorcontrib>RAMASUBBA REDDY, M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Social Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PRAHLAD RAO, K</au><au>RADHAKRISHNAN, S</au><au>RAMASUBBA REDDY, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain tissue phantoms for optical near infrared imaging</atitle><jtitle>Experimental brain research</jtitle><addtitle>Exp Brain Res</addtitle><date>2006-04-01</date><risdate>2006</risdate><volume>170</volume><issue>4</issue><spage>433</spage><epage>437</epage><pages>433-437</pages><issn>0014-4819</issn><eissn>1432-1106</eissn><coden>EXBRAP</coden><abstract>In this study, solid, stable, and cost-effective optical phantoms of scalp-skull, white matter and grey matter are developed by inverse method. To begin with, to obtain a range of optical parameters, absorption and reduced scattering coefficients (mu(a) and mu(s)', respectively), 20 homogeneous phantoms were made of paraffin wax by using optically contrast black and highly scattering white colouring materials in different combination. By comparing the measured reflectance values for each phantom got from the four channel reflectometer with that obtained from steady-state diffusion equation, the values of mu(a) and mu(s)' were determined. Next, phantoms which exhibit specific optical properties of scalp-skull, white and grey matter are developed iteratively by comparing actual reflectance measurements got by adjusting the colour concentration with the predicted reflectance values from the diffusion equation. This is done as follows: to obtain mu(a) of 0.04 mm(-1) for scalp-skull, 9.5 mg of black dye per 100 ml of wax added since more attenuation of light occurs in bone tissue. To obtain a mu(s)' 6.0 mm(-1) for white matter in brain tissue, 190 mg of white dye per 100 ml of wax was used to facilitate more scatter of light. The colour concentrations of phantoms were then adjusted to obtain the predetermined values of optical parameters for scalp-skull, grey and white matter.</abstract><cop>Berlin</cop><pub>Springer</pub><pmid>16341853</pmid><doi>10.1007/s00221-005-0242-4</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-4819 |
ispartof | Experimental brain research, 2006-04, Vol.170 (4), p.433-437 |
issn | 0014-4819 1432-1106 |
language | eng |
recordid | cdi_proquest_miscellaneous_67839151 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Animals Biological and medical sciences Brain - anatomy & histology Fundamental and applied biological sciences. Psychology Humans Image Interpretation, Computer-Assisted Light Medical sciences Models, Biological Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration Neurology Optical properties Optics and Photonics - instrumentation Paraffin Phantoms, Imaging Scattering, Radiation Tissues Vascular diseases and vascular malformations of the nervous system Vertebrates: nervous system and sense organs |
title | Brain tissue phantoms for optical near infrared imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20tissue%20phantoms%20for%20optical%20near%20infrared%20imaging&rft.jtitle=Experimental%20brain%20research&rft.au=PRAHLAD%20RAO,%20K&rft.date=2006-04-01&rft.volume=170&rft.issue=4&rft.spage=433&rft.epage=437&rft.pages=433-437&rft.issn=0014-4819&rft.eissn=1432-1106&rft.coden=EXBRAP&rft_id=info:doi/10.1007/s00221-005-0242-4&rft_dat=%3Cproquest_cross%3E20640703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215142712&rft_id=info:pmid/16341853&rfr_iscdi=true |